IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v104y2013icp583-591.html
   My bibliography  Save this item

Flexibility of a combined heat and power system with thermal energy storage for district heating

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jin, Kaiyuan & Wirz, Richard E., 2020. "Sulfur heat transfer behavior in vertically-oriented and nonuniformly‑heated isochoric thermal energy storage systems," Applied Energy, Elsevier, vol. 260(C).
  2. Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai & Hamidreza Zareipour, 2019. "Flexibility from Electric Boiler and Thermal Storage for Multi Energy System Interaction," Energies, MDPI, vol. 13(1), pages 1-21, December.
  3. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
  4. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
  5. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
  6. Zhang, Yuna & Augenbroe, Godfried, 2018. "Optimal demand charge reduction for commercial buildings through a combination of efficiency and flexibility measures," Applied Energy, Elsevier, vol. 221(C), pages 180-194.
  7. Turski, Michał & Nogaj, Kinga & Sekret, Robert, 2019. "The use of a PCM heat accumulator to improve the efficiency of the district heating substation," Energy, Elsevier, vol. 187(C).
  8. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
  9. Guelpa, Elisa & Deputato, Stefania & Verda, Vittorio, 2018. "Thermal request optimization in district heating networks using a clustering approach," Applied Energy, Elsevier, vol. 228(C), pages 608-617.
  10. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  11. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
  12. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
  13. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
  14. Quirosa, Gonzalo & Torres, Miguel & Chacartegui, Ricardo, 2022. "Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage," Energy, Elsevier, vol. 239(PC).
  15. Yunhai Zhou & Shengkai Guo & Fei Xu & Dai Cui & Weichun Ge & Xiaodong Chen & Bo Gu, 2020. "Multi-Time Scale Optimization Scheduling Strategy for Combined Heat and Power System Based on Scenario Method," Energies, MDPI, vol. 13(7), pages 1-18, April.
  16. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
  17. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
  18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
  19. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
  20. Ummenhofer, C.D. & Heyer, G. & Roediger, T. & Olsen, J. & Page, J., 2017. "Improved system control logic for an MCHP system incorporating electric storage," Applied Energy, Elsevier, vol. 203(C), pages 737-751.
  21. Hong, Feng & Ji, Weiming & Pang, Yalei & Hao, Junhong & Du, Ming & Fang, Fang & Liu, Jizhen, 2023. "A new energy state-based modeling and performance assessment method for primary frequency control of thermal power plants," Energy, Elsevier, vol. 276(C).
  22. Ying Li & Fengzhong Sun & Qiannan Zhang & Xuehong Chen & Wei Yuan, 2020. "Numerical Simulation Study on Structure Optimization and Performance Improvement of Hot Water Storage Tank in CHP System," Energies, MDPI, vol. 13(18), pages 1-14, September.
  23. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
  24. Benedetta Grassi & Edoardo Alessio Piana & Gian Paolo Beretta & Mariagrazia Pilotelli, 2020. "Dynamic Approach to Evaluate the Effect of Reducing District Heating Temperature on Indoor Thermal Comfort," Energies, MDPI, vol. 14(1), pages 1-25, December.
  25. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
  26. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
  27. Sun, Mingyang & Djapic, Predrag & Aunedi, Marko & Pudjianto, Danny & Strbac, Goran, 2019. "Benefits of smart control of hybrid heat pumps: An analysis of field trial data," Applied Energy, Elsevier, vol. 247(C), pages 525-536.
  28. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  29. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
  30. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
  31. Wandong Zheng & Jay J. Hennessy & Hailong Li, 2020. "Reducing renewable power curtailment and CO2 emissions in China through district heating storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
  32. Gao, Shuang & Jurasz, Jakub & Li, Hailong & Corsetti, Edoardo & Yan, Jinyue, 2022. "Potential benefits from participating in day-ahead and regulation markets for CHPs," Applied Energy, Elsevier, vol. 306(PA).
  33. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  34. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
  35. Ruijie Liu & Zhejing Bao & Jun Zheng & Lingxia Lu & Miao Yu, 2021. "Two-Stage Robust and Economic Scheduling for Electricity-Heat Integrated Energy System under Wind Power Uncertainty," Energies, MDPI, vol. 14(24), pages 1-25, December.
  36. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
  37. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
  38. Yeh, Chung-Yu & De Swart, J.K. & Mahmoudi, Amirhoushang & Singh, Abhishek K. & Brem, Gerrit & Shahi, Mina, 2024. "Simulation-based analysis of thermochemical heat storage feasibility in third-generation district heating systems: Case study of Enschede, Netherlands," Renewable Energy, Elsevier, vol. 221(C).
  39. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  40. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
  41. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
  42. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
  43. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
  44. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Ruan, Yingjun, 2020. "Capacity credit and market value analysis of photovoltaic integration considering grid flexibility requirements," Renewable Energy, Elsevier, vol. 159(C), pages 908-919.
  45. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.
  46. Chen, Yue & Wei, Wei & Liu, Feng & Wu, Qiuwei & Mei, Shengwei, 2018. "Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems," Applied Energy, Elsevier, vol. 230(C), pages 403-416.
  47. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
  48. Lu, Shuai & Li, Yuan & Gu, Wei & Xu, Yijun & Ding, Shixing, 2023. "Economy-carbon coordination in integrated energy systems: Optimal dispatch and sensitivity analysis," Applied Energy, Elsevier, vol. 351(C).
  49. Katharina Koch & Bastian Alt & Matthias Gaderer, 2020. "Dynamic Modeling of a Decarbonized District Heating System with CHP Plants in Electricity-Based Mode of Operation," Energies, MDPI, vol. 13(16), pages 1-15, August.
  50. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
  51. Gou, Xing & Chen, Qun & Hu, Kang & Ma, Huan & Chen, Lei & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2018. "Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems," Energy, Elsevier, vol. 160(C), pages 763-773.
  52. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2018. "Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system," Applied Energy, Elsevier, vol. 222(C), pages 280-299.
  53. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
  54. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
  55. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
  56. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Zhang, Xiurong & Zeng, Shunqi, 2017. "Probabilistic power flow analysis considering the dependence between power and heat," Applied Energy, Elsevier, vol. 191(C), pages 582-592.
  57. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
  58. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
  59. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
  60. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
  61. Haupt, Axel & Müller, Karsten, 2017. "Integration of a LOHC storage into a heat-controlled CHP system," Energy, Elsevier, vol. 118(C), pages 1123-1130.
  62. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
  63. Mancarella, Pierluigi & Chicco, Gianfranco & Capuder, Tomislav, 2018. "Arbitrage opportunities for distributed multi-energy systems in providing power system ancillary services," Energy, Elsevier, vol. 161(C), pages 381-395.
  64. Yan Zhang & Quan Lyu & Yang Li & Na Zhang & Lijun Zheng & Haoyan Gong & Hui Sun, 2020. "Research on Down-Regulation Cost of Flexible Combined Heat Power Plants Participating in Real-Time Deep Down-Regulation Market," Energies, MDPI, vol. 13(4), pages 1-17, February.
  65. Jin, K. & Barde, A. & Nithyanandam, K. & Wirz, R.E., 2019. "Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems," Applied Energy, Elsevier, vol. 240(C), pages 870-881.
  66. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  67. Kleinertz, Britta & Brühl, Götz & von Roon, Serafin, 2019. "Heat dispatch centre – Symbiosis of heat generation units to reach cost efficient low emission heat supply," Energy, Elsevier, vol. 189(C).
  68. Teng, Fei & Aunedi, Marko & Strbac, Goran, 2016. "Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system," Applied Energy, Elsevier, vol. 167(C), pages 420-431.
  69. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
  70. Huang, Junpeng & Fan, Jianhua & Furbo, Simon, 2019. "Feasibility study on solar district heating in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 53-64.
  71. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
  72. Zhao, Shifei & Ge, Zhihua & He, Jie & Wang, Chunlan & Yang, Yongping & Li, Peifeng, 2017. "A novel mechanism for exhaust steam waste heat recovery in combined heat and power unit," Applied Energy, Elsevier, vol. 204(C), pages 596-606.
  73. Christian Pfeiffer & Markus Puchegger & Claudia Maier & Ina V. Tomaschitz & Thomas P. Kremsner & Lukas Gnam, 2020. "A Case Study of Socially-Accepted Potentials for the Use of End User Flexibility by Home Energy Management Systems," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
  74. Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
  75. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
  76. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
  77. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
  78. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
  79. Amaral Lopes, Rui & Grønborg Junker, Rune & Martins, João & Murta-Pina, João & Reynders, Glenn & Madsen, Henrik, 2020. "Characterisation and use of energy flexibility in water pumping and storage systems," Applied Energy, Elsevier, vol. 277(C).
  80. Vivian, Jacopo & Quaggiotto, Davide & Zarrella, Angelo, 2020. "Increasing the energy flexibility of existing district heating networks through flow rate variations," Applied Energy, Elsevier, vol. 275(C).
  81. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  82. Liu, Miaomiao & Liu, Ming & Wang, Yu & Chen, Weixiong & Yan, Junjie, 2021. "Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat–power decoupling," Energy, Elsevier, vol. 229(C).
  83. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
  84. Xin, Yong-Lin & Zhao, Tian & Chen, Xi & He, Ke-Lun & Ma, Huan & Chen, Qun, 2022. "Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits," Energy, Elsevier, vol. 252(C).
  85. Sebastian Berg & Lasse Blaume & Benedikt Nilges, 2023. "Quantifying the Operational Flexibility of Distributed Cross-Sectoral Energy Systems for the Integration of Volatile Renewable Electricity Generation," Energies, MDPI, vol. 17(1), pages 1-17, December.
  86. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
  87. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
  88. Pinto, Rui & Bessa, Ricardo J. & Matos, Manuel A., 2017. "Multi-period flexibility forecast for low voltage prosumers," Energy, Elsevier, vol. 141(C), pages 2251-2263.
  89. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
  90. Tulus, Victor & Boer, Dieter & Cabeza, Luisa F. & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2016. "Enhanced thermal energy supply via central solar heating plants with seasonal storage: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 181(C), pages 549-561.
  91. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
  92. Antonino D’Amico & Domenico Panno & Giuseppina Ciulla & Antonio Messineo, 2020. "Multi-Energy School System for Seasonal Use in the Mediterranean Area," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
  93. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
  94. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
  95. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
  96. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
  97. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
  98. Jianjun Wang & Jikun Huo & Shuo Zhang & Yun Teng & Li Li & Taoya Han, 2021. "Flexibility Transformation Decision-Making Evaluation of Coal-Fired Thermal Power Units Deep Peak Shaving in China," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
  99. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making," Energy, Elsevier, vol. 134(C), pages 103-120.
  100. Marguerite, C. & Andresen, G.B. & Dahl, M., 2018. "Multi-criteria analysis of storages integration and operation solutions into the district heating network of Aarhus – A simulation case study," Energy, Elsevier, vol. 158(C), pages 81-88.
  101. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
  102. Wei Wei & Yaping Shi & Kai Hou & Lei Guo & Linyu Wang & Hongjie Jia & Jianzhong Wu & Chong Tong, 2020. "Coordinated Flexibility Scheduling for Urban Integrated Heat and Power Systems by Considering the Temperature Dynamics of Heating Network," Energies, MDPI, vol. 13(12), pages 1-23, June.
  103. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
  104. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
  105. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
  106. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
  107. Yifan, Zhou & Wei, Hu & Le, Zheng & Yong, Min & Lei, Chen & Zongxiang, Lu & Ling, Dong, 2020. "Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch," Energy, Elsevier, vol. 190(C).
  108. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  109. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
  110. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  111. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
  112. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
  113. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
  114. Wanapinit, Natapon & Thomsen, Jessica & Weidlich, Anke, 2022. "Integrating flexibility provision into operation planning: A generic framework to assess potentials and bid prices of end-users," Energy, Elsevier, vol. 261(PB).
  115. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
  116. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
  117. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
  118. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.
  119. Lingkai Zhu & Chengkun Lin & Congyu Wang & Jiwei Song, 2022. "Optimal Dispatch of Multi-Type CHP Units Integrated with Flexibility Renovations for Renewable Energy Accommodation," Energies, MDPI, vol. 15(19), pages 1-16, September.
  120. Ehsan Khorsandnejad & Robert Malzahn & Ann-Katrin Oldenburg & Annedore Mittreiter & Christian Doetsch, 2023. "Analysis of Flexibility Potential of a Cold Warehouse with Different Refrigeration Compressors," Energies, MDPI, vol. 17(1), pages 1, December.
  121. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
  122. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
  123. Kılkış, Şiir, 2015. "Exergy transition planning for net-zero districts," Energy, Elsevier, vol. 92(P3), pages 515-531.
  124. Chakrabarti, Auyon & Proeglhoef, Rafael & Turu, Gonzalo Bustos & Lambert, Romain & Mariaud, Arthur & Acha, Salvador & Markides, Christos N. & Shah, Nilay, 2019. "Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes," Energy, Elsevier, vol. 176(C), pages 805-815.
  125. Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
  126. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
  127. Hu, Kang & Chen, Lei & Chen, Qun & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2017. "Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system," Energy, Elsevier, vol. 124(C), pages 640-651.
  128. Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.
  129. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
  130. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.