IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics096014812301649x.html
   My bibliography  Save this article

Simulation-based analysis of thermochemical heat storage feasibility in third-generation district heating systems: Case study of Enschede, Netherlands

Author

Listed:
  • Yeh, Chung-Yu
  • De Swart, J.K.
  • Mahmoudi, Amirhoushang
  • Singh, Abhishek K.
  • Brem, Gerrit
  • Shahi, Mina

Abstract

In this article a dual heat storage system comprising thermochemical heat storage (TCS) and hot water storage for managing the mismatch between heat generation and demand in district heating systems (DHs) is evaluated. TCS is known as technology suitable for long-term heat storage due to its high energy density and negligible heat losses over a longer period. However, the integration of TCS in DHs is significantly influenced by the operating conditions of DHs. Here we evaluate the feasibility of integrating TCS into DHs in the Enschede region of the Netherlands. DHs models are established to simulate heat generation, demand, and storage, and a control strategy is designed to manage storage coordination. The obtained results show that the dual storage system outperforms the single hot water storage system in reducing peak load generation. Depending on the TCS's operational condition, annual energy generation from peak load in dual storage systems could drop by 30–60 % compared to the single hot water storage system. It is achieved mainly by managing the energy capacity remaining in the storage system. The technical feasibility and benefits of implementing a TCS system in DHs with a dual storage system are shown to be more energy efficient.

Suggested Citation

  • Yeh, Chung-Yu & De Swart, J.K. & Mahmoudi, Amirhoushang & Singh, Abhishek K. & Brem, Gerrit & Shahi, Mina, 2024. "Simulation-based analysis of thermochemical heat storage feasibility in third-generation district heating systems: Case study of Enschede, Netherlands," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s096014812301649x
    DOI: 10.1016/j.renene.2023.119734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301649X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s096014812301649x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.