IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v97y2010i11p1838-1846.html
   My bibliography  Save this item

Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
  2. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
  3. Moursi, Hossam & Kim, Daeha & Kaluarachchi, Jagath J., 2017. "A probabilistic assessment of agricultural water scarcity in a semi-arid and snowmelt-dominated river basin under climate change," Agricultural Water Management, Elsevier, vol. 193(C), pages 142-152.
  4. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi & Mohammad Mehdi Moghimi, 2023. "Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 923-946, January.
  5. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
  6. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
  7. Mohammed Mainuddin & Mac Kirby & Chu Hoanh, 2013. "Impact of climate change on rainfed rice and options for adaptation in the lower Mekong Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 905-938, March.
  8. Kim, Daeha & Kaluarachchi, Jagath J., 2016. "A risk-based hydro-economic analysis for land and water management in water deficit and salinity affected farming regions," Agricultural Water Management, Elsevier, vol. 166(C), pages 111-122.
  9. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
  10. Voloudakis, Dimitrios & Karamanos, Andreas & Economou, Garifalia & Kalivas, Dionissios & Vahamidis, Petros & Kotoulas, Vasilios & Kapsomenakis, John & Zerefos, Christos, 2015. "Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis," Agricultural Water Management, Elsevier, vol. 147(C), pages 116-128.
  11. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
  12. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
  13. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
  14. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
  15. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  16. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
  17. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
  18. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
  19. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
  20. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.
  21. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Afewerk, A. & Abadi, B. & Foster, A.J., 2019. "Modeling irrigation and nitrogen management of wheat in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 216(C), pages 264-272.
  22. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
  23. Tavakoli, Ali Reza & Mahdavi Moghadam, Mehran & Sepaskhah, Ali Reza, 2015. "Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran," Agricultural Water Management, Elsevier, vol. 161(C), pages 136-146.
  24. Haileselassie, Hailay & Araya, A. & Habtu, Solomon & Meles, Kiros Gebretsadkan & Gebru, Girmay & Kisekka, Isaya & Girma, Atkilt & Hadgu, Kiros Meles & Foster, A.J., 2016. "Exploring optimal farm resources management strategy for Quncho-teff (Eragrostis tef (Zucc.) Trotter) using AquaCrop model," Agricultural Water Management, Elsevier, vol. 178(C), pages 148-158.
  25. Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.
  26. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
  27. Vamsi Krishna Vema & K. P. Sudheer & A. N. Rohith & I. Chaubey, 2022. "Impact of water conservation structures on the agricultural productivity in the context of climate change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1627-1644, March.
  28. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
  29. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  30. Kim, Daeha & Kaluarachchi, Jagath, 2015. "Validating FAO AquaCrop using Landsat images and regional crop information," Agricultural Water Management, Elsevier, vol. 149(C), pages 143-155.
  31. Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
  32. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
  33. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
  34. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
  35. Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
  36. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
  37. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
  38. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
  39. Amir Tabarzad & Ali Asghar Ghaemi & Shahrokh Zand-parsa, 2016. "Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 193-193, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.