IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004960.html
   My bibliography  Save this article

Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes

Author

Listed:
  • Martínez-Romero, A.
  • López-Urrea, R.
  • Montoya, F.
  • Pardo, J.J.
  • Domínguez, A.

Abstract

To optimize the irrigation scheduling of field crops to maximize irrigation water productivity requires expert knowledge of the crop development and its productive response to water deficit. Implementing this idea with commodities such as barley, whose current global profitability is low, and, more specifically, in areas where the availability of water resources for irrigation is limited, requires a proper decision support system. In this research, AquaCrop and MOPECO models were used to compute and compare both the crop-water production and irrigation water productivity functions generated by several irrigation strategies provided by each model for the typical irrigated crop barley grown in the area. Furthermore, we evaluated both models’ performance with a 3-year field experiment applying the methodology of optimized regulated deficit irrigation for limited volumes of irrigation water (ORDIL) in barley crop. The results obtained from the production functions show that gross irrigation water depths (GIWD) of more than 310 mm can be useful to attain the potential crop yield, depending on the criteria considered to generate the irrigation scheduling. However, with less GIWD available, the simulated barley development was subjected to water deficit, leading to a reduction in both crop yield and irrigation water productivity. Thus MOPECO simulated higher crop yields and irrigation water productivity values than those obtained by AquaCrop, being between 16% and 27% for crop yields and between 8.0% and 27.5% for irrigation water productivity, under similar GIWD levels. These differences are mainly due to how the irrigation strategies are outlined in the two models and the different evapotranspiration methodologies they deploy. Finally, both models provided performed appropriately in simulating final crop yield (errors lower than 0.50 × 103 kg ha−1), as well as canopy cover and aboveground biomass evolution, in the case of AquaCrop, whose goodness of fit indicators were close to 0.90 or higher. In terms of crop evapotranspiration, AquaCrop simulated a 12% higher average value than MOPECO. It can be concluded that both models are complementary, and their use will depend on the necessities of the final user. Thus, MOPECO offers a wider range of irrigation strategies, while AquaCrop offers a more detailed information about the physiological response of the crop during its development, being the results of the simulations accurate enough in both models.

Suggested Citation

  • Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004960
    DOI: 10.1016/j.agwat.2021.107219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    2. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    3. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    4. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    5. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    6. Domínguez, A. & Martínez, R.S. & de Juan, J.A. & Martínez-Romero, A. & Tarjuelo, J.M., 2012. "Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 42-53.
    7. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    8. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    9. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    12. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    13. de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
    14. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    16. López-Mata, E. & Tarjuelo, J.M. & de Juan, J.A. & Ballesteros, R. & Domínguez, A., 2010. "Effect of irrigation uniformity on the profitability of crops," Agricultural Water Management, Elsevier, vol. 98(1), pages 190-198, December.
    17. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    18. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    19. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    20. Juan, J. A. de & Tarjuelo, J. M. & Valiente, M. & Garcia, P., 1996. "Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity I: Development of a decision model," Agricultural Water Management, Elsevier, vol. 31(1-2), pages 115-143, June.
    21. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    2. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    3. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Pardo, J.J. & Domínguez, A. & Léllis, B.C. & Montoya, F. & Tarjuelo, J.M. & Martínez-Romero, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on quality, profitability and sustainability of barley in water scarce areas," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    8. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    9. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    10. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    11. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    12. Nascimento, A.K & Schwartz, R.C. & Lima, F.A & López-Mata, E. & Domínguez, A. & Izquiel, A. & Tarjuelo, J.M & Martínez-Romero, A, 2019. "Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone," Agricultural Water Management, Elsevier, vol. 211(C), pages 178-189.
    13. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    14. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    16. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    19. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    20. Domínguez, Alfonso & Schwartz, Robert C. & Pardo, José J. & Guerrero, Bridget & Bell, Jourdan M. & Colaizzi, Paul D. & Louis Baumhardt, R., 2022. "Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.