IDEAS home Printed from https://ideas.repec.org/r/biw/wpaper/22.html
   My bibliography  Save this item

Exploring the regional characteristics of inter-provincial CO2 emissions in China:An improved fuzzy clustering analysis based on particle swarm optimization

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
  2. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
  3. Chang, Kai & Zhang, Chao & Chang, Hao, 2016. "Emissions reduction allocation and economic welfare estimation through interregional emissions trading in China: Evidence from efficiency and equity," Energy, Elsevier, vol. 113(C), pages 1125-1135.
  4. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
  5. Cheng, Shulei & Fan, Wei & Zhang, Jian & Wang, Ning & Meng, Fanxin & Liu, Gengyuan, 2021. "Multi-sectoral determinants of carbon emission inequality in Chinese clustering cities," Energy, Elsevier, vol. 214(C).
  6. Wasniewski, Krzysztof, 2020. "Energy efficiency as manifestation of collective intelligence in human societies," Energy, Elsevier, vol. 191(C).
  7. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
  8. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
  9. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
  10. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
  11. Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
  12. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
  13. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
  14. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
  15. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
  16. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
  17. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
  18. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
  19. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
  20. Gong, Bing & Zheng, Xiaochen & Guo, Qing & Ordieres-Meré, Joaquín, 2019. "Discovering the patterns of energy consumption, GDP, and CO2 emissions in China using the cluster method," Energy, Elsevier, vol. 166(C), pages 1149-1167.
  21. Ming Meng & Lixue Wang & Qu Chen, 2018. "Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the Fairness Principle," Energies, MDPI, vol. 11(9), pages 1-16, August.
  22. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
  23. Zhang, Kun & Zhang, Zong-Yong & Liang, Qiao-Mei, 2017. "An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization," Energy Policy, Elsevier, vol. 103(C), pages 203-211.
  24. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
  25. Jia Wei & Hong Chen & Ruyin Long, 2018. "Diffusion Paths and Guiding Policy for Urban Residents’ Carbon Identification Capability: Simulation Analysis from the Perspective of Relation Strength and Personal Carbon Trading," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
  26. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2018. "The nationwide characterization and modeling of local energy systems: Quantifying the role of decentralized generation and energy resources in future communities," Energy Policy, Elsevier, vol. 118(C), pages 516-533.
  27. Yulan Lv & Yumeng Pang & Buhari Doğan, 2022. "The role of Chinese fiscal decentralization in the governance of carbon emissions: perspectives from spatial effects decomposition and its heterogeneity," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 635-668, June.
  28. Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
  29. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
  30. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
  31. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
  32. Lin, Huaxing & Zhou, Ziqian & Chen, Shun & Jiang, Ping, 2023. "Clustering and assessing carbon peak statuses of typical cities in underdeveloped Western China," Applied Energy, Elsevier, vol. 329(C).
  33. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
  34. Quan Guo & Zijing Liang & Xiang Bai & Mengnan Lv & Anying Zhang, 2022. "The Analysis of Carbon Emission’s Characteristics and Dynamic Evolution Based on the Strategy of Unbalanced Regional Economic Development in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
  35. Wei, Jia & Chen, Hong & Long, Ruyin, 2016. "Is ecological personality always consistent with low-carbon behavioral intention of urban residents?," Energy Policy, Elsevier, vol. 98(C), pages 343-352.
  36. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
  37. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
  38. Menghan Zhang & Suocheng Dong & Fujia Li & Shuangjie Xu & Kexin Guo & Qian Liu, 2022. "Spatial–Temporal Evolution and Improvement Measures of Embodied Carbon Emissions in Interprovincial Trade for Coal Energy Supply Bases: Case Study of Anhui, China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
  39. Jia Wei & Hong Chen & Ruyin Long, 2018. "Determining Multi-Layer Factors That Drive the Carbon Capability of Urban Residents in Response to Climate Change: An Exploratory Qualitative Study in China," IJERPH, MDPI, vol. 15(8), pages 1-19, July.
  40. Dong, Huijuan & Dai, Hancheng & Geng, Yong & Fujita, Tsuyoshi & Liu, Zhe & Xie, Yang & Wu, Rui & Fujii, Minoru & Masui, Toshihiko & Tang, Liang, 2017. "Exploring impact of carbon tax on China’s CO2 reductions and provincial disparities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 596-603.
  41. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO 2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.
  42. Huang, Caihong & Zhang, Xiaoqing & Liu, Kai, 2021. "Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  43. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
  44. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
  45. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
  46. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.