Advanced Search
MyIDEAS: Login

Robust estimation with discrete explanatory variables

Contents:

Author Info

  • Čížek, Pavel

Abstract

The least squares estimator is probably the most frequently used estimation method in regression analysis. Unfortunately, it is also quite sensitive to data contamination and model misspecification. Although there are several robust estimators designed for parametric regression models that can be used in place of least squares, these robust estimators cannot be easily applied to models containing binary and categorical explanatory variables. Therefore, I design a robust estimator that can be used for any linear regression model no matter what kind of explanatory variables the model contains. Additionally, I propose an adaptive procedure that maximizes the efficiency of the proposed estimator for a given data set while preserving its robustness.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/65326/1/727071114.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes in its series SFB 373 Discussion Papers with number 2002,76.

as in new window
Length:
Date of creation: 2002
Date of revision:
Handle: RePEc:zbw:sfb373:200276

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://www.wiwi.hu-berlin.de/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. repec:wop:humbsf:2001-25 is not listed on IDEAS
  2. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
  3. White, Halbert, 1980. "Nonlinear Regression on Cross-Section Data," Econometrica, Econometric Society, vol. 48(3), pages 721-46, April.
  4. Franco Peracchi, 1988. "Robust M-Estimators," UCLA Economics Working Papers 477, UCLA Department of Economics.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Cizek, P., 2006. "Efficient Robust Estimation of Regression Models (Replaced by DP 2007-87)," Discussion Paper 2006-8, Tilburg University, Center for Economic Research.
  2. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1500-1529, December.
  3. Cizek, P., 2007. "General Trimmed Estimation: Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaced by DP 2007-65)," Discussion Paper 2007-1, Tilburg University, Center for Economic Research.
  4. Cizek, P., 2007. "General Trimmed Estimation: Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1)," Discussion Paper 2007-65, Tilburg University, Center for Economic Research.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200276. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.