IDEAS home Printed from https://ideas.repec.org/p/zbw/kitiip/52.html
   My bibliography  Save this paper

A novel approach to include social costs in humanitarian objective functions

Author

Listed:
  • Diehlmann, Florian
  • Hiemsch, Patrick S.
  • Wiens, Marcus
  • Lüttenberg, Markus
  • Schultmann, Frank

Abstract

Social cost functions in humanitarian operations are defined as the sum of logistics and deprivation costs. They are widely regarded as appropriate objective functions, even though the way they were introduced requires cautiously formulated deprivation cost functions for the analyzed goods and do not allow decision makers to include their individual preferences. We develop this approach further and introduce a normalized weighted sum approach to increase decision makers' understanding of the tradeoffs between cost and suffering and, therefore, increase transparency significantly. Furthermore, we apply the approach to a case study of a hypothetical water system failure in the city of Berlin. We show that the normalized weighted sum approach significantly improves transparency and leads to a deeper understanding of the tradeoffs during the crisis. Consequently, it proved itself as a powerful tool for decision makers preparing for or navigating through a crisis.

Suggested Citation

  • Diehlmann, Florian & Hiemsch, Patrick S. & Wiens, Marcus & Lüttenberg, Markus & Schultmann, Frank, 2020. "A novel approach to include social costs in humanitarian objective functions," Working Paper Series in Production and Energy 52, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  • Handle: RePEc:zbw:kitiip:52
    DOI: 10.5445/IR/1000127134
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/227753/1/1743117302.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000127134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Kunsch & M. Theys & J. Brans, 2007. "The importance of systems thinking in ethical and sustainable decision-making," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(3), pages 253-269, September.
    2. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    3. Xihui Wang & Xiang Wang & Liang Liang & Xiaohang Yue & Luk N. Van Wassenhove, 2017. "Estimation of Deprivation Level Functions using a Numerical Rating Scale," Production and Operations Management, Production and Operations Management Society, vol. 26(11), pages 2137-2150, November.
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    5. Wilfredo Yushimito & Miguel Jaller & Satish Ukkusuri, 2012. "A Voronoi-Based Heuristic Algorithm for Locating Distribution Centers in Disasters," Networks and Spatial Economics, Springer, vol. 12(1), pages 21-39, March.
    6. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    7. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    8. Milad Keshvari Fard & Mahyar Eftekhar & Felix Papier, 2019. "An Approach for Managing Operating Assets for Humanitarian Development Programs," Production and Operations Management, Production and Operations Management Society, vol. 28(8), pages 2132-2151, August.
    9. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    10. Ľudmila Jánošíková & Marek Kvet & Peter Jankovič & Lýdia Gábrišová, 2019. "An optimization and simulation approach to emergency stations relocation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 737-758, September.
    11. Gokhan Kirlik & Serpil Sayın, 2015. "Computing the nadir point for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 62(1), pages 79-99, May.
    12. Cotes, Nathalie & Cantillo, Victor, 2019. "Including deprivation costs in facility location models for humanitarian relief logistics," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 89-100.
    13. Khayal, Danya & Pradhananga, Rojee & Pokharel, Shaligram & Mutlu, Fatih, 2015. "A model for planning locations of temporary distribution facilities for emergency response," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 22-30.
    14. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    15. Gutjahr, Walter J. & Fischer, Sophie, 2018. "Equity and deprivation costs in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 270(1), pages 185-197.
    16. Biswal, Arun Kumar & Jenamani, Mamata & Kumar, Sri Krishna, 2018. "Warehouse efficiency improvement using RFID in a humanitarian supply chain: Implications for Indian food security system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 205-224.
    17. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    18. Xihui Wang & Yu Fan & Liang Liang & Harwin De Vries & Luk N. Van Wassenhove, 2019. "Augmenting Fixed Framework Agreements in Humanitarian Logistics with a Bonus Contract," Production and Operations Management, Production and Operations Management Society, vol. 28(8), pages 1921-1938, August.
    19. Amiya K. Chakravarty, 2018. "Humanitarian response to hurricane disasters: Coordinating flood‐risk mitigation with fundraising and relief operations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 275-288, April.
    20. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    21. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    22. Christian Fikar & Patrick Hirsch & Pamela C. Nolz, 2018. "Agent-based simulation optimization for dynamic disaster relief distribution," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 423-442, June.
    23. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    3. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    5. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    6. Rafiei, Rezvan & Huang, Kai & Verma, Manish, 2022. "Cash versus in-kind transfer programs in humanitarian operations: An optimization program and a case study," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    7. Linlin Zhang & Na Cui, 2021. "Pre-Positioning Facility Location and Resource Allocation in Humanitarian Relief Operations Considering Deprivation Costs," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    8. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    9. Cotes, Nathalie & Cantillo, Victor, 2019. "Including deprivation costs in facility location models for humanitarian relief logistics," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 89-100.
    10. Zhang, Lingye & Lu, Jing & Yang, Zaili, 2021. "Optimal scheduling of emergency resources for major maritime oil spills considering time-varying demand and transportation networks," European Journal of Operational Research, Elsevier, vol. 293(2), pages 529-546.
    11. Macea, Luis F. & Cantillo, Victor & Arellana, Julian, 2018. "Influence of attitudes and perceptions on deprivation cost functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 125-141.
    12. Khanchehzarrin, Saeed & Ghaebi Panah, Mona & Mahdavi-Amiri, Nezam & Shiripour, Saber, 2022. "A bi-level multi-objective location-routing optimization model for disaster relief operations considering public donations," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Jianfang Shao & Changyong Liang & Xihui Wang & Xiang Wang & Liang Liang, 2020. "Relief Demand Calculation in Humanitarian Logistics Using Material Classification," IJERPH, MDPI, vol. 17(2), pages 1-25, January.
    14. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    15. Wapee Manopiniwes & Takashi Irohara, 2021. "Optimization model for temporary depot problem in flood disaster response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1743-1763, January.
    16. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    17. Roberto Aringhieri & Sara Bigharaz & Davide Duma & Alberto Guastalla, 2022. "Fairness in ambulance routing for post disaster management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 189-211, March.
    18. Jiaxin Geng & Hanping Hou & Shaoqing Geng, 2021. "Optimization of Warehouse Location and Supplies Allocation for Emergency Rescue under Joint Government–Enterprise Cooperation Considering Disaster Victims’ Distress Perception," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    19. Yuli Zhang & Amber R. Richter & Jeyaveerasingam George Shanthikumar & Zuo‐Jun Max Shen, 2022. "Dynamic Inventory Relocation in Disaster Relief," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1052-1070, March.
    20. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitiip:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.iip.kit.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.