IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s82013.html
   My bibliography  Save this paper

Smart grid agent: Plug-in electric vehicle

Author

Listed:
  • Dallinger, David
  • Link, Jochen
  • Büttner, Markus

Abstract

This study describes a method for programming a plug-in electric vehicle agent that can be used in power system models and in embedded systems implemented in real plug-in electric vehicles. Implementing the software in real-life applications and in simulation tools enables research with a high degree of detail and practical relevance. Agent-based programming, therefore, is an important tool for investigating the future power system. To demonstrate the plug-in electric vehicle agent behavior, an optimization algorithm is presented and two battery aging methods as well as their effect on V2G operation are analyzed. Aging costs based on the depth of discharge result in shallow cycles and a strong dependency on driving behavior, because the state-of-charge affects the discharging process. In contrast, aging costs based on energy throughput calculations results in deeper cycles and V2G operation which is less depend-ent on driving behavior.

Suggested Citation

  • Dallinger, David & Link, Jochen & Büttner, Markus, 2013. "Smart grid agent: Plug-in electric vehicle," Working Papers "Sustainability and Innovation" S8/2013, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s82013
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/87728/1/772042594.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dallinger, David & Wietschel, Martin, 2012. "Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3370-3382.
    2. Link, Jochen & Büttner, Markus & Dallinger, David & Richter, Julius, 2010. "Optimisation algorithms for the charge dispatch of plug-in vehicles based on variable tariffs," Working Papers "Sustainability and Innovation" S3/2010, Fraunhofer Institute for Systems and Innovation Research (ISI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    2. Poria Astero & Bong Jun Choi & Hao Liang & Lennart Söder, 2017. "Transactive Demand Side Management Programs in Smart Grids with High Penetration of EVs," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Balázs Kulcsár & Tamás Mankovits & Piroska Gyöngyi Ailer, 2021. "The Renewable Energy Production Capability of Settlements to Meet Local Electricity and Transport Energy Demands," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
    4. Romo, R. & Micheloud, O., 2015. "Power quality of actual grids with plug-in electric vehicles in presence of renewables and micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 189-200.
    5. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    6. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    7. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    8. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    9. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    10. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    11. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    12. Hadi Suyono & Mir Toufikur Rahman & Hazlie Mokhlis & Mohamadariff Othman & Hazlee Azil Illias & Hasmaini Mohamad, 2019. "Optimal Scheduling of Plug-in Electric Vehicle Charging Including Time-of-Use Tariff to Minimize Cost and System Stress," Energies, MDPI, vol. 12(8), pages 1-21, April.
    13. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    14. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    15. Xingping Zhang & Yanni Liang & Yakun Zhang & Yinhe Bu & Hongyang Zhang, 2017. "Charge Pricing Optimization Model for Private Charging Piles in Beijing," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    16. Maximilian J. Zangs & Peter B. E. Adams & Timur Yunusov & William Holderbaum & Ben A. Potter, 2016. "Distributed Energy Storage Control for Dynamic Load Impact Mitigation," Energies, MDPI, vol. 9(8), pages 1-20, August.
    17. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    18. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    19. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    20. Kacperski, Celina & Ulloa, Roberto & Klingert, Sonja & Kirpes, Benedikt & Kutzner, Florian, 2022. "Impact of incentives for greener battery electric vehicle charging – A field experiment," Energy Policy, Elsevier, vol. 161(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s82013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isfhgde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.