IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/200849.html
   My bibliography  Save this paper

Assessing the impact of algorithmic trading on markets: A simulation approach

Author

Listed:
  • Gsell, Markus

Abstract

Innovative automated execution strategies like Algorithmic Trading gain significant market share on electronic market venues worldwide, although their impact on market outcome has not been investigated in depth yet. In order to assess the impact of such concepts, e.g. effects on the price formation or the volatility of prices, a simulation environment is presented that provides stylized implementations of algorithmic trading behavior and allows for modeling latency. As simulations allow for reproducing exactly the same basic situation, an assessment of the impact of algorithmic trading models can be conducted by comparing different simulation runs including and excluding a trader constituting an algorithmic trading model in its trading behavior. By this means the impact of Algorithmic Trading on different characteristics of market outcome can be assessed. The results indicate that large volumes to execute by the algorithmic trader have an increasing impact on market prices. On the other hand, lower latency appears to lower market volatility.

Suggested Citation

  • Gsell, Markus, 2008. "Assessing the impact of algorithmic trading on markets: A simulation approach," CFS Working Paper Series 2008/49, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:200849
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/43250/1/606199632.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    2. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    3. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    4. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Johannes Prix & Otto Loistl & Michael Huetl, 2007. "Algorithmic Trading Patterns in Xetra Orders," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 717-739.
    7. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    8. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    9. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    10. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomber, Peter & Gsell, Markus, 2009. "Algorithmic trading engines versus human traders: Do they behave different in securities markets?," CFS Working Paper Series 2009/10, Center for Financial Studies (CFS).
    2. Iori, G. & Porter, J., 2012. "Agent-Based Modelling for Financial Markets," Working Papers 12/08, Department of Economics, City University London.
    3. Gianluca Piero Maria Virgilio, 2019. "High-frequency trading: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 183-208, June.
    4. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    5. Paweł Mielcarz & Dmytro Osiichuk & Jarosław Cymerski, 2020. "Algorithmic Sangfroid? The Decline of Sensitivity of Crude Oil Prices to News on Potentially Disruptive Terror Attacks and Political Unrest," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    6. Alexandru Mandes, 2020. "Impact of Electronic Liquidity Providers Within a High-Frequency Agent-Based Modeling Framework," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 407-450, February.
    7. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    8. Qixuan Luo & Yu Shi & Xuan Zhou & Handong Li, 2021. "Research on the Effects of Institutional Liquidation Strategies on the Market Based on Multi-agent Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1025-1049, December.
    9. Farjam, Mike & Kirchkamp, Oliver, 2018. "Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 248-269.
    10. Virgilio, Gianluca Piero Maria, 2020. "When spread bites fast – Volatility and wide bid-ask spread in a mixed high-frequency and low-frequency environment," Research in International Business and Finance, Elsevier, vol. 51(C).
    11. Le, Anh Tu & Le, Thai-Ha & Liu, Wai-Man & Fong, Kingsley Y., 2020. "Multiple duration analyses of dynamic limit order placement strategies and aggressiveness in a low-latency market environment," International Review of Financial Analysis, Elsevier, vol. 72(C).
    12. Virgilio, Gianluca, 2017. "Is high-frequency trading tiering the financial markets?," Research in International Business and Finance, Elsevier, vol. 41(C), pages 158-171.
    13. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    14. Alexandru Mandes, 2015. "Impact of inventory-based electronic liquidity providers within a high-frequency event- and agent-based modeling framework," MAGKS Papers on Economics 201515, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    4. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    5. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    6. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    7. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    8. Isao Yagi & Yuji Masuda & Takanobu Mizuta, 2020. "Analysis of the Impact of High-Frequency Trading on Artificial Market Liquidity," Papers 2010.13038, arXiv.org.
    9. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    10. He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    11. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    12. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    13. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    14. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    15. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    16. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    17. Ahmed El OUBANI & Mostafa LEKHAL, 2022. "Conception d’un modèle microscopique adapté aux marchés financiers émergents," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 17-30, June.
    18. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    19. Frank H. Westerhoff, 2009. "Exchange Rate Dynamics: A Nonlinear Survey," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 11, Edward Elgar Publishing.
    20. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017.

    More about this item

    Keywords

    Algorithmic Trading; Simulation; Double Auction;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.