IDEAS home Printed from https://ideas.repec.org/p/wti/papers/855.html
   My bibliography  Save this paper

Promotion of Renewables and the Challenges in the Water Sector

Author

Listed:
  • Gudas, Karolis

Abstract

This paper outlines the interlinkages between the water policies integration objective and the decarbonisation objective. It concludes that low-carbon renewable electricity policy scenario may have negative externalities on the water body under the existing regulatory framework in the EU. The analysis is mainly dealt within the framework of the European Union’s Renewable Energy Directive of 2009 (RES Directive).

Suggested Citation

  • Gudas, Karolis, 2015. "Promotion of Renewables and the Challenges in the Water Sector," Papers 855, World Trade Institute.
  • Handle: RePEc:wti:papers:855
    as

    Download full text from publisher

    File URL: http://www.wti.org/media/filer_public/83/3b/833bc377-20c7-46d3-9bb3-d8b3b2175666/paper_on_water_energy_nexus.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    2. Potgieter, Petrus H., 2010. "Water and energy in South Africa – managing scarcity," MPRA Paper 23360, University Library of Munich, Germany.
    3. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    4. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    5. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    6. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    7. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    8. Jiahai Yuan & Qi Lei & Minpeng Xiong & Jingsheng Guo & Changhong Zhao, 2014. "Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    9. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    11. Turner, Graham M. & West, James, 2012. "Environmental implications of electricity generation in an integrated long-term planning framework," Energy Policy, Elsevier, vol. 41(C), pages 316-332.
    12. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    13. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    14. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    15. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    16. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    17. Wang, Young-Doo & Lee, Jae Seung & Agbemabiese, Lawrence & Zame, Kenneth & Kang, Sung-Goo, 2015. "Virtual water management and the water–energy nexus: A case study of three Mid-Atlantic states," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 76-84.
    18. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Welitom Ttatom Pereira da Silva & Ildo Luis Sauer & Hédio Tatizawa, 2022. "Perspectives on the Advancement of Industry 4.0 Technologies Applied to Water Pumping Systems: Trends in Building Pumps," Energies, MDPI, vol. 15(9), pages 1-17, May.
    19. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
    20. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wti:papers:855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Morven McLean (email available below). General contact details of provider: https://edirc.repec.org/data/wtibech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.