Advanced Search
MyIDEAS: Login

Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming

Contents:

Author Info

  • J. Gondzio
Registered author(s):

    Abstract

    We develop a variant of an interior point method for solving two-stage stochastic linear programming problems. The problems are solved in a deterministic equivalent form in which the first stage variables appear as dense columns. To avoid their degrading influence on the adjacency structure AA^T (and the Cholesky factor) an iterative method is applied to compute orthogonal projections. Conjugate gradient algorithm with a structure-exploiting preconditioner is used. The method has been applied to solve real--life stochastic optimization problems. Preliminary computational results show the feasibility of the approach for problems with up to 80 independent scenarios (a deterministic equivalent linear program has 14001 constraints and 63690 variables).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-94-130.ps
    Download Restriction: no

    Bibliographic Info

    Paper provided by International Institute for Applied Systems Analysis in its series Working Papers with number wp94130.

    as in new window
    Length:
    Date of creation: Dec 1994
    Date of revision:
    Handle: RePEc:wop:iasawp:wp94130

    Contact details of provider:
    Postal: A-2361 Laxenburg
    Phone: +43-2236-807-0
    Fax: +43-2236-71313
    Email:
    Web page: http://www.iiasa.ac.at/Publications/Catalog/PUB_ONLINE.html
    More information through EDIRC

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp94130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.