IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/201425.html
   My bibliography  Save this paper

European option pricing with constant relative sensitivity probability weighting function

Author

Listed:
  • Martina Nardon

    (Department of Economics, C� Foscari University Of Venice)

  • Paolo Pianca

    (Department of Economics, C� Foscari University Of Venice)

Abstract

We evaluate European financial options under continuous cumulative prospect theory. Within this framework, it is possible to model investors� attitude toward risk, which may be one of the possible causes of mispricing. We focus on probability risk attitudes and consider alternative probability weighting functions. In particular, curvature of the weighting function models optimism and pessimism when one moves from extreme probabilities, whereas elevation can be interpreted as a measure of relative optimism. The constant relative sensitivity weighting function is the only one, amongst those in the literature, which is able to model separately curvature and elevation. We are interested in studying the effects of both these features on options prices.

Suggested Citation

  • Martina Nardon & Paolo Pianca, 2014. "European option pricing with constant relative sensitivity probability weighting function," Working Papers 2014:25, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2014:25
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2014/WP_DSE_nardon_pianca_25_14.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luce, R Duncan & Mellers, Barbara A & Chang, Shi-jie, 1993. "Is Choice the Correct Primitive? On Using Certainty Equivalents and Reference Levels to Predict Choices among Gambles," Journal of Risk and Uncertainty, Springer, vol. 6(2), pages 115-143, April.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    4. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    5. Imran S. Currim & Rakesh K. Sarin, 1989. "Prospect Versus Utility," Management Science, INFORMS, vol. 35(1), pages 22-41, January.
    6. Breuer, Wolfgang & Perst, Achim, 2007. "Retail banking and behavioral financial engineering: The case of structured products," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 827-844, March.
    7. Birnbaum, Michael H. & McIntosh, William Ross, 1996. "Violations of Branch Independence in Choices between Gambles," Organizational Behavior and Human Decision Processes, Elsevier, vol. 67(1), pages 91-110, July.
    8. Wakker,Peter P., 2010. "Prospect Theory," Cambridge Books, Cambridge University Press, number 9780521765015.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Shiller, Robert J., 1999. "Human behavior and the efficiency of the financial system," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 20, pages 1305-1340, Elsevier.
    11. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    12. Safra, Zvi & Segal, Uzi, 1998. "Constant Risk Aversion," Journal of Economic Theory, Elsevier, vol. 83(1), pages 19-42, November.
    13. Klaus Abbink & Bettina Rockenbach, 2006. "Option pricing by students and professional traders: a behavioural investigation," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 497-510.
    14. David E. Bell, 1985. "Disappointment in Decision Making Under Uncertainty," Operations Research, INFORMS, vol. 33(1), pages 1-27, February.
    15. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    16. Christian Wolff & Thorsten Lehnert & Cokki Versluis, 2009. "A Cumulative Prospect Theory Approach to Option Pricing," LSF Research Working Paper Series 09-03, Luxembourg School of Finance, University of Luxembourg.
    17. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    18. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    19. George Wu & Richard Gonzalez, 1999. "Nonlinear Decision Weights in Choice Under Uncertainty," Management Science, INFORMS, vol. 45(1), pages 74-85, January.
    20. Allen M. Poteshman & Vitaly Serbin, 2003. "Clearly Irrational Financial Market Behavior: Evidence from the Early Exercise of Exchange Traded Stock Options," Journal of Finance, American Finance Association, vol. 58(1), pages 37-70, February.
    21. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    22. Lattimore, Pamela K. & Baker, Joanna R. & Witte, Ann D., 1992. "The influence of probability on risky choice: A parametric examination," Journal of Economic Behavior & Organization, Elsevier, vol. 17(3), pages 377-400, May.
    23. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    24. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    25. Pamela K. Lattimore & Joanna R. Baker & A. Dryden Witte, 1992. "The Influence Of Probability on Risky Choice: A parametric Examination," NBER Technical Working Papers 0081, National Bureau of Economic Research, Inc.
    26. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    27. Michael Kilka & Martin Weber, 2001. "What Determines the Shape of the Probability Weighting Function Under Uncertainty?," Management Science, INFORMS, vol. 47(12), pages 1712-1726, December.
    28. Mohammed Abdellaoui & Olivier l’Haridon & Horst Zank, 2009. "Separating Curvature and Elevation: A Parametric Weighting Function," Economics Discussion Paper Series 0901, Economics, The University of Manchester.
    29. Hersh Shefrin & Meir Statman, 1993. "Behavioral Aspects of the Design and Marketing of Financial Products," Financial Management, Financial Management Association, vol. 22(2), Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Nardon & Paolo Pianca, 2019. "European option pricing under cumulative prospect theory with constant relative sensitivity probability weighting functions," Computational Management Science, Springer, vol. 16(1), pages 249-274, February.
    2. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    3. Martina Nardon & Paolo Pianca, 2012. "Prospect theory: An application to European option pricing," Working Papers 2012:34, Department of Economics, University of Venice "Ca' Foscari".
    4. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    5. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    6. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    7. Webb, Craig S. & Zank, Horst, 2011. "Accounting for optimism and pessimism in expected utility," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 706-717.
    8. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    9. José Lara Resende & George Wu, 2010. "Competence effects for choices involving gains and losses," Journal of Risk and Uncertainty, Springer, vol. 40(2), pages 109-132, April.
    10. Christian Wolff & Thorsten Lehnert & Cokki Versluis, 2009. "A Cumulative Prospect Theory Approach to Option Pricing," LSF Research Working Paper Series 09-03, Luxembourg School of Finance, University of Luxembourg.
    11. Katarzyna M. Werner & Horst Zank, 2019. "A revealed reference point for prospect theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(4), pages 731-773, June.
    12. Thomas Epper & Helga Fehr-Duda, 2012. "The missing link: unifying risk taking and time discounting," ECON - Working Papers 096, Department of Economics - University of Zurich, revised Oct 2018.
    13. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    14. Matthew D. Rablen, 2023. "Loss Aversion, Risk Aversion, and the Shape of the Probability Weighting Function," Working Papers 2023013, The University of Sheffield, Department of Economics.
    15. Jinrui Pan & Craig S. Webb & Horst Zank, 2019. "Delayed probabilistic risk attitude: a parametric approach," Theory and Decision, Springer, vol. 87(2), pages 201-232, September.
    16. Levon Barseghyan & Francesca Molinari & Ted O'Donoghue & Joshua C. Teitelbaum, 2013. "The Nature of Risk Preferences: Evidence from Insurance Choices," American Economic Review, American Economic Association, vol. 103(6), pages 2499-2529, October.
    17. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.
    18. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    19. Foster, Gigi & Frijters, Paul & Schaffner, Markus & Torgler, Benno, 2018. "Expectation formation in an evolving game of uncertainty: New experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 154(C), pages 379-405.
    20. Epper, Thomas & Fehr-Duda, Helga, 2017. "A Tale of Two Tails: On the Coexistence of Overweighting and Underweighting of Rare Extreme Events," Economics Working Paper Series 1705, University of St. Gallen, School of Economics and Political Science.

    More about this item

    Keywords

    Behavioral finance; cumulative prospect theory; curvature; elevation; European option pricing.;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2014:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.