Advanced Search
MyIDEAS: Login to save this paper or follow this series

Two Stochastic Volatility Processes - American Option Pricing

Contents:

Author Info

Abstract

In this paper we consider the pricing of an American call option whose underlying asset dynamics evolve under the influence of two independent stochastic volatility processes of the Heston (1993) type. We derive the associated partial differential equation (PDE) of the option price using hedging arguments and Ito's lemma. An integral expression for the general solution of the PDE is presented by using Duhamel's principle and this is expressed in terms of the joint transition density function for the driving stochastic processes. We solve the Kolmogorov PDE for the joint transition density function by first transforming it to a corresponding system of characteristic PDEs using a combination of Fourier and Laplace transforms. The characteristic PDE system is solved by using the method of characteristics. With the full price representation in place, numerical results are presented by first approximating the early exercise surface with a bivariate log linear function. We perform numerical comparisons with results generated by the method of lines algorithm and note that our approach is very competitive in terms of accuracy.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp292.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 292.

as in new window
Length: 74
Date of creation: 01 Jun 2011
Date of revision:
Handle: RePEc:uts:rpaper:292

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords: American options; Fourier transform; Laplace transform; method of characteristics;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
  2. Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary, University of London, School of Economics and Finance.
  3. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(04), pages 519-529, December.
  4. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
  5. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  6. Mark Broadie & Jérôme B. Detemple & Eric Ghysels & Olivier Torrès, 1996. "American Options with Stochastic Dividends and Volatility: A Nonparametric Investigation," CIRANO Working Papers 96s-26, CIRANO.
  7. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  8. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
  9. Andrew Ziogas & Carl Chiarella, 2005. "Pricing American Options under Stochastic Volatility," Computing in Economics and Finance 2005 77, Society for Computational Economics.
  10. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2008. "The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines," Research Paper Series 219, Quantitative Finance Research Centre, University of Technology, Sydney.
  11. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ziveyi, Jonathan & Blackburn, Craig & Sherris, Michael, 2013. "Pricing European options on deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 300-311.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:292. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.