IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/422.html
   My bibliography  Save this paper

Spikes and memory in (Nord Pool) electricity price spot prices

Author

Listed:

Abstract

Electricity spot prices are subject to transitory sharp movements commonly referred to as spikes. The paper aims at assessing their effects on model based inferences and predictions, with reference to the Nord Pool power exchange. We identify a spike as a price value which deviates substantially from the normal price, where the latter is defined as the expectation arising from a model accounting for long memory at the zero and at the weekly seasonal frequencies, given the knowledge of the past realizations. Hence, a spike is associated to a time series innovation with size larger than a specified threshold. The latter regulates the robustness of the estimates of the underlying price level and it is chosen by a data driven procedure that focuses on the ability to predict future prices. The normal price is computed by a modified Kalman filter, which robustifies the inferences by cleaning the spikes, i.e. shrinking an observation deviating substantially from the normal price towards the one-step-ahead prediction. Our empirical application illustrates the effects of the spikes on the estimates of the parameters governing the persistence of the series; moreover, a real time rolling forecasting exercise is used to establish the amount of cleaning for optimizing the predicting accuracy at different horizons.

Suggested Citation

  • Tommaso Proietti & Niels Haldrup & Oskar Knapik, 2017. "Spikes and memory in (Nord Pool) electricity price spot prices," CEIS Research Paper 422, Tor Vergata University, CEIS, revised 18 Dec 2017.
  • Handle: RePEc:rtv:ceisrp:422
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP422.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeffrey V. Butler & Danila Serra & Giancarlo Spagnolo, 2017. "Motivating Whistleblowers," Departmental Working Papers 1701, Southern Methodist University, Department of Economics.
    2. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    3. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    4. Adam McCloskey & Jonathan B. Hill, 2017. "Parameter Estimation Robust to Low-Frequency Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 598-610, October.
    5. Germana Corrado & Luisa Corrado & Giuseppe De Michele & Francesco Salustri, 2017. "Are Perceptions of Corruption Matching Reality? Theory and Evidence from Microdata," CEIS Research Paper 420, Tor Vergata University, CEIS, revised 14 Dec 2017.
    6. Attar, Andrea & Campioni, Eloisa & Piaser, Gwenaël, 2019. "Private communication in competing mechanism games," Journal of Economic Theory, Elsevier, vol. 183(C), pages 258-283.
    7. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    8. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    10. Hellström, Jörgen & Lundgren, Jens & Yu, Haishan, 2012. "Why do electricity prices jump? Empirical evidence from the Nordic electricity market," Energy Economics, Elsevier, vol. 34(6), pages 1774-1781.
    11. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    12. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    2. Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
    3. McElroy, Tucker S. & Holan, Scott H., 2016. "Computation of the autocovariances for time series with multiple long-range persistencies," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 44-56.
    4. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    5. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    6. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.
    7. Kouamé, Euloge F. & Hili, Ouagnina, 2008. "Minimum distance estimation of k-factors GARMA processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3254-3261, December.
    8. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    9. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    10. Giorgio Canarella & Luis Gil-Alana & Rangan Gupta & Stephen M Miller, 2021. "Persistence and cyclical dynamics of US and UK house prices: Evidence from over 150 years of data," Urban Studies, Urban Studies Journal Limited, vol. 58(1), pages 53-72, January.
    11. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    12. Robinson, Peter M. & Velasco, Carlos, 2015. "Efficient inference on fractionally integrated panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 185(2), pages 435-452.
    13. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    15. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    16. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    17. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    18. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    19. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    20. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.

    More about this item

    Keywords

    Robustness; Kalman Filter; Long Memory.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.