IDEAS home Printed from https://ideas.repec.org/p/ris/ewikln/2022_003.html
   My bibliography  Save this paper

Charting the Development of a Global Market for Low-Carbon Hydrogen

Author

Listed:
  • Schönfisch, Max

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI))

Abstract

This paper analyses the impact of supply technology choices and costs on structures and prices on the emerging low-carbon hydrogen market using a novel, integrated natural gas and hydrogen market model. It shows that natural gas-based low-carbon hydrogen production pathways predominate in technology-neutral scenarios in 2050. In scenarios where hydrogen production is gas-based, hydrogen is produced close to the point of consumption. Natural gas prices determine local hydrogen prices. In scenarios characterised by high shares of RES-based low-carbon hydrogen production, long-distance, cross-border trade in pure hydrogen becomes an economically viable proposition due to the heterogeneous distribution of low-cost RES potentials and significant hydrogen price spreads between countries with high hydrogen demand but poor RES potentials, and countries that are well endowed with cost-competitive RES. Trade is conducted almost exclusively via pipeline. The analysis finds the most significant potential for cross-border trade in and around Europe. It suggests that it would be economical for Europe to import substantial quantities of low-carbon hydrogen from North Africa.

Suggested Citation

  • Schönfisch, Max, 2022. "Charting the Development of a Global Market for Low-Carbon Hydrogen," EWI Working Papers 2022-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2022_003
    as

    Download full text from publisher

    File URL: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2022/03/EWI_WP_22-03_Charting_the_Development_of_a_Global_Market_for_Low-Cabon_Hydrogen_Schoenfisch.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    2. Berk, Istemi & Çam, Eren, 2020. "The shift in global crude oil market structure: A model-based analysis of the period 2013–2017," Energy Policy, Elsevier, vol. 142(C).
    3. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    4. Christian Growitsch & Harald Hecking & Timo Panke, 2014. "Supply Disruptions and Regional Price Effects in a Spatial Oligopoly—An Application to the Global Gas Market," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 944-975, November.
    5. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    6. Roman Mendelevitch, 2018. "Testing supply-side climate policies for the global steam coal market—can they curb coal consumption?," Climatic Change, Springer, vol. 150(1), pages 57-72, September.
    7. Sers, Martin R. & Victor, Peter A., 2018. "The Energy-emissions Trap," Ecological Economics, Elsevier, vol. 151(C), pages 10-21.
    8. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    9. Simon Schulte and Florian Weiser, 2019. "Natural Gas Transits and Market Power: The Case of Turkey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    10. Hecking, Harald & Panke, Timo, 2012. "COLUMBUS - A global gas market model," EWI Working Papers 2012-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).
    2. Berk, Istemi & Çam, Eren, 2020. "The shift in global crude oil market structure: A model-based analysis of the period 2013–2017," Energy Policy, Elsevier, vol. 142(C).
    3. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    4. Seck, Gondia S. & Hache, Emmanuel & Sabathier, Jerome & Guedes, Fernanda & Reigstad, Gunhild A. & Straus, Julian & Wolfgang, Ove & Ouassou, Jabir A. & Askeland, Magnus & Hjorth, Ida & Skjelbred, Hans , 2022. "Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Berk, Istemi & Çam , Eren, 2019. "The Shift in Global Crude Oil Market Structure: A model-based analysis of the period 2013–2017," EWI Working Papers 2019-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    6. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    7. Schulte, Simon & Weiser, Florian, 2017. "Natural Gas Transits and Market Power - The Case of Turkey," EWI Working Papers 2017-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 15 Aug 2017.
    8. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    9. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    10. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    12. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    13. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    15. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    16. Anne Neumann & Juan Rosellón & Hannes Weigt, 2015. "Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism," Networks and Spatial Economics, Springer, vol. 15(1), pages 149-181, March.
    17. Muhammad Amin & Hamad Hussain Shah & Bilal Bashir & Muhammad Azhar Iqbal & Umer Hameed Shah & Muhammad Umair Ali, 2023. "Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review," Energies, MDPI, vol. 16(11), pages 1-25, May.
    18. De-León Almaraz, Sofía & Rácz, Viktor & Azzaro-Pantel, Catherine & Szántó, Zoltán Oszkár, 2022. "Multiobjective and social cost-benefit optimisation for a sustainable hydrogen supply chain: Application to Hungary," Applied Energy, Elsevier, vol. 325(C).
    19. Ephraim Bonah Agyekum & Jeffrey Dankwa Ampah & Solomon Eghosa Uhunamure & Karabo Shale & Ifeoma Prisca Onyenegecha & Vladimir Ivanovich Velkin, 2023. "Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    20. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).

    More about this item

    Keywords

    Hydrogen;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2022_003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: https://edirc.repec.org/data/ewikode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.