IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201427.html
   My bibliography  Save this paper

Does Sunspot Numbers Cause Global Temperatures? A Reconsideration Using a Non-Parametric Causality Test

Author

Listed:
  • Hossein Hassani

    (The Statistical Research Centre, Bournemouth University, UK)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, South Africa)

  • Xu Huang

    (The Statistical Research Centre, Bournemouth University, UK)

  • Mansi Ghodsi

    (The Statistical Research Centre, Bournemouth University, UK)

Abstract

This paper applies several causality tests to analyze whether sunspot numbers (used as an approximate proxy for the solar activity) cause global temperatures, using monthly data covering the time period 1880:1-2013:9. Both parametric and non-parametric causality tests are performed, which concludes standard time domain Granger causality test, the frequency domain causality test and the Singular Spectrum Analysis (SSA)-based causality test. Standard time domain Granger causality test fails to reject the null hypothesis that sunspot numbers does not cause global temperatures for both full and sub-samples (identified based on tests of structural breaks), the frequency domain causality test detects predictability for both the full-sample and the last sub-sample at short (2 to 2.6 months) and long (10.3 months and above) cycle lengths respectively. Our results highlight the importance of analyzing causality using the frequency domain test, which, unlike the time domain Granger causality test, allows us to decompose causality by different time horizons, and hence, could detect predictability at certain cycle lengths even when the time domain causality test might fail to pick up any causality. We also performed SSA-based causality test on both the monthly data of the time period 1936:3-1986:11 and 1986:12-2013:9. Significant causality relationships are detected for the time period 1936:3-1986:11 and the time range of 1986:12-2013:9. What is more, we also confirm causality relationship between global temperatures and sunspot numbers in the first subsample. SSA-based causality test shows powerful sensitiveness of detecting causality relationship that previous methods could not detect. Generally speaking, the non-parametric SSA-based causality test outperformed both time domain and frequency domain causality tests. Further, given the wide-spread discussion in the literature, that results for the full-sample causality, irrespective of whether it is in time or frequency domains, cannot be relied upon when there are structural breaks present, and one needs to draw inference regarding causality from the sub-samples, SSA-based causality test provides the most accurate results for each subsample and it can also show clear support of predictability on forecasting between tested variables.

Suggested Citation

  • Hossein Hassani & Rangan Gupta & Xu Huang & Mansi Ghodsi, 2014. "Does Sunspot Numbers Cause Global Temperatures? A Reconsideration Using a Non-Parametric Causality Test," Working Papers 201427, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201427
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rangan Gupta & Luis A. Gil-Alana & Olaoluwa S. Yaya, 2015. "Do sunspot numbers cause global temperatures? Evidence from a frequency domain causality test," Applied Economics, Taylor & Francis Journals, vol. 47(8), pages 798-808, February.
    2. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    3. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    4. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    5. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    6. Holmes, James M & Hutton, Patricia A, 1990. "On the Causal Relationship between Government Expenditures and National Income," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 87-95, February.
    7. Gil-Alana, Luis A. & Yaya, OlaOluwa S. & Shittu, Olanrewaju I., 2014. "Global temperatures and sunspot numbers. Are they related?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 42-50.
    8. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    9. Hossein Hassani & Saeed Heravi & Anatoly Zhigljavsky, 2013. "Forecasting UK Industrial Production with Multivariate Singular Spectrum Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 395-408, August.
    10. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    11. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    12. Hossein Hassani & Abdol S. Soofi & Anatoly Zhigljavsky, 2013. "Predicting inflation dynamics with singular spectrum analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 743-760, June.
    13. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    14. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    2. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    3. Hossein Hassani & Xu Huang & Mansi Ghodsi, 2018. "Big Data and Causality," Annals of Data Science, Springer, vol. 5(2), pages 133-156, June.
    4. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    5. Kristoufek, Ladislav, 2017. "Has global warming modified the relationship between sunspot numbers and global temperatures?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 351-358.
    6. Huang, Xu & Maçaira, Paula Medina & Hassani, Hossein & Cyrino Oliveira, Fernando Luiz & Dhesi, Gurjeet, 2019. "Hydrological natural inflow and climate variables: Time and frequency causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 480-495.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    2. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    4. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    5. Isabel Cortés-Jiménez & Manuel Artís, 2005. "The role of the tourism sector in economic development - Lessons from the Spanish experience," ERSA conference papers ersa05p488, European Regional Science Association.
    6. Claude Diebolt & Cédric Doliger, 2005. "Becker vs. Easterlin. Education, Fertility and Growth in France after World War II," Working Papers 05-03, Association Française de Cliométrie (AFC).
    7. repec:agr:journl:v:4(605):y:2015:i:4(605):p:133-144 is not listed on IDEAS
    8. Uddin, Gazi Salah & Shahbaz, Muhammad & Arouri, Mohamed & Teulon, Frédéric, 2014. "Financial development and poverty reduction nexus: A cointegration and causality analysis in Bangladesh," Economic Modelling, Elsevier, vol. 36(C), pages 405-412.
    9. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    10. Tung Liu & Lee C. Spector, 2005. "Dynamic employment adjustments over business cycles," Empirical Economics, Springer, vol. 30(1), pages 151-169, January.
    11. Mostafa Raeisi Sarkandiz & Robabeh Bahlouli, 2019. "The Stock Market between Classical and Behavioral Hypotheses: An Empirical Investigation of the Warsaw Stock Exchange," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(2), pages 67-88, December.
    12. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    13. Vicente Esteve & Francisco Requena, 2006. "A Cointegration Analysis of Car Advertising and Sales Data in the Presence of Structural Change," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 13(1), pages 111-128.
    14. J. Andrew Hansz & Ying Zhang & Tingyu Zhou, 2017. "An Investigation into the Substitutability of Equity and Mortgage REITs in Real Estate Portfolios," The Journal of Real Estate Finance and Economics, Springer, vol. 54(3), pages 338-364, April.
    15. Paul Gallimore & J. Andrew Hansz & Wikrom Prombutr & Ying Zhang, 2014. "Long-term Cointegrative and Short-term Causal Relations among U.S. Real Estate Sectors," International Real Estate Review, Global Social Science Institute, vol. 17(3), pages 359-394.
    16. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    17. Shahbaz, Muhammad, 2012. "Does trade openness affect long run growth? Cointegration, causality and forecast error variance decomposition tests for Pakistan," Economic Modelling, Elsevier, vol. 29(6), pages 2325-2339.
    18. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    19. Shahbaz, Muhammad, 2017. "Current Issues in Time-Series Analysis for the Energy-Growth Nexus; Asymmetries and Nonlinearities Case Study: Pakistan," MPRA Paper 82221, University Library of Munich, Germany, revised 19 Oct 2017.
    20. Menezes, Rui & Dionísio, Andreia & Hassani, Hossein, 2012. "On the globalization of stock markets: An application of Vector Error Correction Model, Mutual Information and Singular Spectrum Analysis to the G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 369-384.
    21. Muhammad, Shahbaz & Reza, Sherafatian-Jahromi & Muhammad, Nasir Malik, 2012. "Linkages between Defence Spending and Income Inequality in Iran," MPRA Paper 41983, University Library of Munich, Germany, revised 14 Oct 2012.

    More about this item

    Keywords

    Causality; SSA; frequency domain; global temperatures predictability; sunspot numbers;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.