IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/69572.html
   My bibliography  Save this paper

Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes

Author

Listed:
  • Aknouche, Abdelhakim

Abstract

A unified quasi-maximum likelihood (QML) estimation theory for stationary and nonstationary simple Markov bilinear (SMBL) models is proposed. Such models may be seen as generalized random coefficient autoregressions (GRCA) in which the innovation and the random coefficient processes are fully correlated. It is shown that the QML estimate (QMLE) for the SMBL model is always asymptotically Gaussian without assuming strict stationarity, meaning that there is no knife edge effect. The asymptotic variance of the QMLE is different in the stationary and nonstationary cases but is consistently estimated using the same estimator. A perhaps surprising result is that in the nonstationary domain, all SMBL parameters are consistently estimated in contrast with unstable GARCH and GRCA models where the QMLE of the conditional variance intercept is inconsistent. As a result, strict stationarity testing for the SMBL is studied. Simulation experiments and a real application to strict stationarity testing for some financial stock returns illustrate the theory in finite samples.

Suggested Citation

  • Aknouche, Abdelhakim, 2015. "Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes," MPRA Paper 69572, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:69572
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/69572/1/MPRA_paper_69572.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cline, Daren B. H. & Pu, Huay-min H., 2002. "A note on a simple Markov bilinear stochastic process," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 283-288, February.
    2. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    3. Aknouche, Abdelhakim & Touche, Nassim, 2015. "Weighted least squares-based inference for stable and unstable threshold power ARCH processes," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 108-115.
    4. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    7. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    8. S. Y. Hwang & I. V. Basawa, 2005. "Explosive Random‐Coefficient AR(1) Processes and Related Asymptotics for Least‐Squares Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 807-824, November.
    9. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    11. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
    12. Aknouche, Abdelhakim & Al-Eid, Eid M. & Hmeid, Aboubakry M., 2011. "Offline and online weighted least squares estimation of nonstationary power ARCH processes," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1535-1540, October.
    13. Shiqing Ling & Dong Li, 2008. "Asymptotic inference for a nonstationary double AR (1) model," Biometrika, Biometrika Trust, vol. 95(1), pages 257-263.
    14. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    15. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    16. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    17. Alexander Aue & Lajos Horváth & Josef Steinebach, 2006. "Estimation in Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 61-76, January.
    18. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    19. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    20. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    2. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    3. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    4. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    5. Li, Dong & Tao, Yuxin & Yang, Yaxing & Zhang, Rongmao, 2023. "Maximum likelihood estimation for α-stable double autoregressive models," Journal of Econometrics, Elsevier, vol. 236(1).
    6. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    7. Abdelhakim Aknouche, 2015. "Quadratic random coefficient autoregression with linear-in-parameters volatility," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 99-125, July.
    8. Zhu, Ke, 2015. "Hausman tests for the error distribution in conditionally heteroskedastic models," MPRA Paper 66991, University Library of Munich, Germany.
    9. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
    10. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    11. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    12. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    13. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    14. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    15. Stefan Richter & Weining Wang & Wei Biao Wu, 2018. "A supreme test for periodic explosive GARCH," Papers 1812.03475, arXiv.org.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    17. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    18. Aknouche, Abdelhakim & Al-Eid, Eid M. & Hmeid, Aboubakry M., 2011. "Offline and online weighted least squares estimation of nonstationary power ARCH processes," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1535-1540, October.
    19. Wang, Guochang & Zhu, Ke & Li, Guodong & Li, Wai Keung, 2022. "Hybrid quantile estimation for asymmetric power GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 264-284.
    20. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.

    More about this item

    Keywords

    Markov bilinear process; random coefficient process; stability; instability; Quasi-maximum likelihood; knife edge effect; strict stationarity testing.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:69572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.