Advanced Search
MyIDEAS: Login to save this paper or follow this series

Asymptotic properties of OLS estimates in autoregressions with bounded or slowly growing deterministic trends

Contents:

Author Info

  • Mynbaev, Kairat

Abstract

We propose a general method of modeling deterministic trends for autoregressions. The method relies on the notion of $L_2$-approximable regressors previously developed by the author. Some facts from the theory of functions play an important role in the proof. In its present form, the method encompasses slowly growing regressors, such as logarithmic trends, and leaves open the case of polynomial trends.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/18448/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 18448.

as in new window
Length:
Date of creation: 2003
Date of revision: 2005
Handle: RePEc:pra:mprapa:18448

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: autoregression; deterministic trend; OLS estimator asymptotics;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Andrews, Donald W K & McDermott, C John, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," Review of Economic Studies, Wiley Blackwell, vol. 62(3), pages 343-60, July.
  2. Anderson, T. W. & Kunitomo, Naoto, 1992. "Asymptotic distributions of regression and autoregression coefficients with martingale difference disturbances," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 221-243, February.
  3. Rahbek, Anders & Christian Kongsted, Hans & Jorgensen, Clara, 1999. "Trend stationarity in the I(2) cointegration model," Journal of Econometrics, Elsevier, vol. 90(2), pages 265-289, June.
  4. Serena Ng & Timothy J. Vogelsang, 2002. "Forecasting autoregressive time series in the presence of deterministic components," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 196-224, June.
  5. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  6. Andrews, Donald W. K., 1987. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Working Papers 645, California Institute of Technology, Division of the Humanities and Social Sciences.
  7. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, September.
  8. Nabeya, Seiji, 2000. "Asymptotic Distributions For Unit Root Test Statistics In Nearly Integrated Seasonal Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 16(02), pages 200-230, April.
  9. Mynbaev, Kairat, 2001. "The strengths and weaknesses of L2 approximable regressors," MPRA Paper 9056, University Library of Munich, Germany.
  10. Mynbaev, Kairat, 2000. "$L_p$-Approximable sequences of vectors and limit distribution of quadratic forms of random variables," MPRA Paper 18447, University Library of Munich, Germany, revised 2001.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mynbaev, Kairat, 2006. "Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model," MPRA Paper 4411, University Library of Munich, Germany.
  2. Mynbaev, Kairat T., 2010. "Asymptotic distribution of the OLS estimator for a mixed spatial model," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 733-748, March.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:18448. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.