Advanced Search
MyIDEAS: Login

A selection of maximal elements under non-transitive indifferences

Contents:

Author Info

  • Alcantud, José Carlos R.
  • Bosi, Gianni
  • Zuanon, Magalì

Abstract

In this work we are concerned with maximality issues under intransitivity of the indifference. Our approach relies on the analysis of "undominated maximals" (cf., Peris and Subiza, J Math Psychology 2002). Provided that an agent's binary relation is acyclic, this is a selection of its maximal elements that can always be done when the set of alternatives is finite. In the case of semiorders, proceeding in this way is the same as using Luce's selected maximals. We put forward a sufficient condition for the existence of undominated maximals for interval orders without any cardinality restriction. Its application to certain type of continuous semiorders is very intuitive and accommodates the well-known "sugar example" by Luce.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/16601/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 16601.

as in new window
Length:
Date of creation: 04 Aug 2009
Date of revision:
Handle: RePEc:pra:mprapa:16601

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Maximal element; Selection of maximals; Acyclicity; Interval order; Semiorder;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bridges, Douglas S., 1985. "Representing interval orders by a single real-valued function," Journal of Economic Theory, Elsevier, vol. 36(1), pages 149-155, June.
  2. J.C. R. Alcantud, 2002. "Characterization of the existence of maximal elements of acyclic relations," Economic Theory, Springer, vol. 19(2), pages 407-416.
  3. Josep Enric Peris Ferrando & Begoña Subiza Martínez, 1997. "Choosing among maximals," Working Papers. Serie AD 1997-19, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16601. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.