IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/113821.html
   My bibliography  Save this paper

The future of peer-to-peer trading of distributed renewable energy

Author

Listed:
  • Wu W, Wen
  • Quezada, George
  • Schleiger, Emma
  • Bratanova, Alexandra
  • Graham, Paul
  • Spak, B

Abstract

The energy industry is transforming. Advances in energy generation and storage, digital technologies and platforms, robotics, Internet of Things, artificial intelligence and autonomous vehicles are driving tomorrow’s innovations, and enabling new business models to emerge. Unlike previous industrial revolutions, the digital revolution has no clear boundaries, and its development is likely to be ongoing, ubiquitous and rapid. In addition, accelerated adoption of new technologies and smart devices, especially among the tech-savvy digital natives, is increasingly empowering energy consumers of tomorrow to become ‘prosumers’ who generate as well as consume energy. The emergence of new peer-to-peer (P2P) business models across many industries, coupled with increasing interest by Australians in the sharing economy, could see the P2P business model extend to the energy industry of the future. Over the next decade, new P2P energy trading platforms may emerge to allow prosumers to trade their excess electricity with consumers who want to purchase affordable renewable energy. However, how will P2P energy trading be integrated into the existing energy system? Will P2P energy trading provide a secure, reliable and cost-effective mechanism for monetising DER? This report opens with the outcomes of a horizon scan of interconnected social, economic, geopolitical, technological and environmental trends driving transformation across the energy industry. Building on the analysed trends, the second part of the report presents future narratives describing how P2P energy trading may operate in 2030. With these insights, the government, energy and property industries, and consumers will be able to better navigate the uncertainties around P2P energy trading, and maximise the potential opportunities that this new energy system could bring over the next decade.

Suggested Citation

  • Wu W, Wen & Quezada, George & Schleiger, Emma & Bratanova, Alexandra & Graham, Paul & Spak, B, 2019. "The future of peer-to-peer trading of distributed renewable energy," MPRA Paper 113821, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:113821
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/113821/1/MPRA_paper_113821.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Green, Jemma & Newman, Peter, 2017. "Citizen utilities: The emerging power paradigm," Energy Policy, Elsevier, vol. 105(C), pages 283-293.
    2. Shigeo Asahi & Haruyuki Teranishi & Kazuki Kusaki & Toshiyuki Kaizu & Takashi Kita, 2017. "Two-step photon up-conversion solar cells," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    3. Peter Newton & Peter Newman, 2013. "The Geography of Solar Photovoltaics (PV) and a New Low Carbon Urban Transition Theory," Sustainability, MDPI, vol. 5(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheyuan Sun & Sara Tavakoli & Kaveh Khalilpour & Alexey Voinov & Jonathan Paul Marshall, 2024. "Barriers to Peer-to-Peer Energy Trading Networks: A Multi-Dimensional PESTLE Analysis," Sustainability, MDPI, vol. 16(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Trivess Moore & Andréanne Doyon, 2018. "The Uncommon Nightingale: Sustainable Housing Innovation in Australia," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    3. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    4. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    5. Peter W. Newton & Briony C. Rogers, 2020. "Transforming Built Environments: Towards Carbon Neutral and Blue-Green Cities," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    6. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    7. Roberto Leonardo Rana & Pasquale Giungato & Angela Tarabella & Caterina Tricase, 2019. "Blockchain Applications and Sustainability Issues," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(S13), pages 861-861, November.
    8. Adamu Sani Yahaya & Nadeem Javaid & Fahad A. Alzahrani & Amjad Rehman & Ibrar Ullah & Affaf Shahid & Muhammad Shafiq, 2020. "Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    9. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    10. Zafu Assefa Teferi & Peter Newman, 2018. "Slum Upgrading: Can the 1.5 °C Carbon Reduction Work with SDGs in these Settlements?," Urban Planning, Cogitatio Press, vol. 3(2), pages 52-63.
    11. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    12. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    13. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Kosuke Saegusa, 2023. "P2P Electricity Trading Considering User Preferences for Renewable Energy and Demand-Side Shifts," Energies, MDPI, vol. 16(8), pages 1-25, April.
    14. Pasquale Giungato & Roberto Rana & Angela Tarabella & Caterina Tricase, 2017. "Current Trends in Sustainability of Bitcoins and Related Blockchain Technology," Sustainability, MDPI, vol. 9(12), pages 1-11, November.
    15. Simon Wright & Mark Frost & Alfred Wong & Kevin A. Parton, 2022. "Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    16. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Marcin Wójcik & Pamela Jeziorska-Biel, 2023. "Geographies of Energy: Key Issues and Challenges towards Spatial Justice Concepts," Energies, MDPI, vol. 16(2), pages 1-9, January.
    18. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    19. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    20. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.

    More about this item

    Keywords

    Energy; Distributed generation; scenarios; strategic foresight; energy economics; peer-to-peer;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:113821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.