IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/0522.html
   My bibliography  Save this paper

Eigenvector Procedure based on Weighted Preference Flows in Multicriteria Outranking Analysis

Author

Listed:
  • Santha Chenayah

    (Faculty of Economics and Administration, University Malaya)

  • Eiji Takeda

    (Graduate School of Economics, Osaka University)

Abstract

The outranking analysis has been frequently used to deal with the complex decisions involving qualitative criteria and imprecise data. So far, various versions of ELECTRE have been proposed for ranking alternatives in the outranking analysis. Among others, ELECTRE III has been widely used. A distillation procedure using a qualification index is proposed to rank alternatives from the valued outranking relation. A weakness of ELECTRE III, however, is to involve the arbitrariness in the selection of the discrimination threshold function for the distillation procedure. On the other hand, various variants of PROMETHEE are also proposed for the outranking analysis. PROMETHEE intends to be simple and easy to understand. A deficiency of PROMETHEE is that it does not take into account the preference intensity of alternatives in the in-preference flow and out-preference flow for each alternative. We propose a new preference ranking procedure based on eigenvector using the gweighted h in- and outpreference flows of each alternative in the outranking analysis. The basic idea of the procedure proposed here is that it should be better to outrank a gstrong h alternative than a gweak h one and, conversely, it is less serious to be outranked by a gstrong h alternative than by gweak h one in a PROMETHEE context. It has a completely different interpretation with the AHP (Analytic Hierarchy Process) since the components of the valued outranking relation matrix are neither ratios nor reciprocal as in the AHP.

Suggested Citation

  • Santha Chenayah & Eiji Takeda, 2005. "Eigenvector Procedure based on Weighted Preference Flows in Multicriteria Outranking Analysis," Discussion Papers in Economics and Business 05-22, Osaka University, Graduate School of Economics.
  • Handle: RePEc:osk:wpaper:0522
    as

    Download full text from publisher

    File URL: http://www2.econ.osaka-u.ac.jp/library/global/dp/0522.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Macharis, Cathy & Springael, Johan & De Brucker, Klaas & Verbeke, Alain, 2004. "PROMETHEE and AHP: The design of operational synergies in multicriteria analysis.: Strengthening PROMETHEE with ideas of AHP," European Journal of Operational Research, Elsevier, vol. 153(2), pages 307-317, March.
    2. Bertrand Mareschal & Jean Pierre Brans, 1992. "PROMETHEE V: MCDM problems with segmentation constraints," ULB Institutional Repository 2013/9341, ULB -- Universite Libre de Bruxelles.
    3. B. Roy & Ph. Vincke, 1984. "Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results," Management Science, INFORMS, vol. 30(11), pages 1323-1335, November.
    4. De Keyser, Wim & Peeters, Peter, 1996. "A note on the use of PROMETHEE multicriteria methods," European Journal of Operational Research, Elsevier, vol. 89(3), pages 457-461, March.
    5. Albadvi, Amir, 2004. "Formulating national information technology strategies: A preference ranking model using PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 153(2), pages 290-296, March.
    6. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    7. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    8. Roy, Bernard & Vanderpooten, Daniel, 1997. "An overview on "The European school of MCDA: Emergence, basic features and current works"," European Journal of Operational Research, Elsevier, vol. 99(1), pages 26-27, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    2. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    3. Kubińska, Elżbieta & Adamczyk-Kowalczuk, Magdalena & Andrzejewski, Mariusz & Rozakis, Stelios, 2022. "Incorporating the status quo effect into the decision making process: The case of municipal companies merger," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    4. Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2007. "Group decision-making for leakage management strategy of water network," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 441-459.
    5. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling, 2006. "Environmental impact assessment using the evidential reasoning approach," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1885-1913, November.
    6. Albadvi, Amir & Chaharsooghi, S. Kamal & Esfahanipour, Akbar, 2007. "Decision making in stock trading: An application of PROMETHEE," European Journal of Operational Research, Elsevier, vol. 177(2), pages 673-683, March.
    7. Tsuen-Ho Hsu & Ling-Zhong Lin, 2014. "Using Fuzzy Preference Method for Group Package Tour Based on the Risk Perception," Group Decision and Negotiation, Springer, vol. 23(2), pages 299-323, March.
    8. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    9. Abu-Taleb, Maher F. & Mareschal, Bertrand, 1995. "Water resources planning in the Middle East: Application of the PROMETHEE V multicriteria method," European Journal of Operational Research, Elsevier, vol. 81(3), pages 500-511, March.
    10. Emre Çalişkan & Erdem Aksakal & Saliha Çetinyokuş & Tahsin Çetinyokuş, 2019. "Hybrid Use of Likert Scale-Based AHP and PROMETHEE Methods for Hazard Analysis and Consequence Modeling (HACM) Software Selection," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1689-1715, September.
    11. G Özerol & E Karasakal, 2008. "Interactive outranking approaches for multicriteria decision-making problems with imprecise information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1253-1268, September.
    12. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    13. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Tomas Balezentis & Virgilijus Skulskis, 2021. "A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    14. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    15. Mohammad Nikoo & Nafise Khorramshokouh & Shahryar Monghasemi, 2015. "Optimal Design of Detention Rockfill Dams Using a Simulation-Based Optimization Approach with Mixed Sediment in the Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5469-5488, December.
    16. Irina Vinogradova, 2019. "Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization," Mathematics, MDPI, vol. 7(10), pages 1-21, October.
    17. Ikuobase Emovon & Rosemary A. Norman & Alan J. Murphy, 2018. "Hybrid MCDM based methodology for selecting the optimum maintenance strategy for ship machinery systems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 519-531, March.
    18. Andreopoulou, Zacharoula & Koliouska, Christiana & Galariotis, Emilios & Zopounidis, Constantin, 2018. "Renewable energy sources: Using PROMETHEE II for ranking websites to support market opportunities," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 31-37.
    19. Weibing Sun & Fu Zhang & Shuya Tai & Jinkui Wu & Yaqiong Mu, 2021. "Study on Glacial Tourism Exploitation in the Dagu Glacier Scenic Spot Based on the AHP–ASEB Method," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    20. Szántó, Richárd, 2012. "Több szempontú részvételi döntések a fenntarthatósági értékelésekben. A legnépszerűbb módszerek összehasonlítása [Participatory multi-criteria decision analysis. A comparison of methodologies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1336-1355.

    More about this item

    Keywords

    Multiple criteria analysis; PROMETHEE; ELECTRE; Valued outranking relations;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:0522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.