IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/27597.html
   My bibliography  Save this paper

Assessing the Age Specificity of Infection Fatality Rates for COVID-19: Systematic Review, Meta-analysis, & Public Policy Implications

Author

Listed:
  • Andrew T. Levin
  • William P. Hanage
  • Nana Owusu-Boaitey
  • Kensington B. Cochran
  • Seamus P. Walsh
  • Gideon Meyerowitz-Katz

Abstract

To assess age-specific infection fatality rates (IFRs) for COVID-19, we have conducted a systematic review of seroprevalence studies as well as countries with comprehensive tracing programs. Age-specific IFRs were computed using the prevalence data in conjunction with reported fatalities four weeks after the midpoint date of each study, reflecting typical lags in fatalities and reporting. Using metaregression procedures, we find a highly significant log-linear relationship between age and IFR for COVID-19. The estimated age-specific IFRs are very low for children and younger adults but increase progressively to 0.4% at age 55, 1.3% at age 65, 4.2% at age 75, and 14% at age 85. About 90% of the geographical variation in population IFR is explained by differences in age composition of the population and age-specific prevalence. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults. Moreover, the population IFR for COVID-19 should not be viewed as a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to protect vulnerable age groups could substantially decrease total deaths.

Suggested Citation

  • Andrew T. Levin & William P. Hanage & Nana Owusu-Boaitey & Kensington B. Cochran & Seamus P. Walsh & Gideon Meyerowitz-Katz, 2020. "Assessing the Age Specificity of Infection Fatality Rates for COVID-19: Systematic Review, Meta-analysis, & Public Policy Implications," NBER Working Papers 27597, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:27597
    Note: EH
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w27597.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karl M. Aspelund & Michael C. Droste & James H. Stock & Christopher D. Walker, 2020. "Identification and Estimation of Undetected COVID-19 Cases Using Testing Data from Iceland," NBER Working Papers 27528, National Bureau of Economic Research, Inc.
    2. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    3. Manski, Charles F. & Molinari, Francesca, 2021. "Estimating the COVID-19 infection rate: Anatomy of an inference problem," Journal of Econometrics, Elsevier, vol. 220(1), pages 181-192.
    4. Robert E. Hall & Charles I. Jones & Peter J. Klenow, 2020. "Trading Off Consumption and COVID-19 Deaths," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 42(1), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    2. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    3. Nicola Fuchs-Schündeln & Dirk Krueger & André Kurmann & Etienne Lalé & Alexander Ludwig & Irina Popova, 2023. "The Fiscal and Welfare Effects of Policy Responses to the Covid-19 School Closures," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(1), pages 35-98, March.
    4. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    5. Dirk Niepelt & Mart n Gonzalez-Eiras, 2020. "Optimally Controlling an Epidemic," Diskussionsschriften dp2019, Universitaet Bern, Departement Volkswirtschaft.
    6. Hausmann, Ricardo & Schetter, Ulrich, 2022. "Horrible trade-offs in a pandemic: Poverty, fiscal space, policy, and welfare," World Development, Elsevier, vol. 153(C).
    7. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    8. Christian Moser & Pierre Yared, 2022. "Pandemic Lockdown: The Role of Government Commitment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 46, pages 27-50, October.
    9. Valentina Aprigliano & Alessandro Borin & Francesco Paolo Conteduca & Simone Emiliozzi & Marco Flaccadoro & Sabina Marchetti & Stefania Villa, 2021. "Forecasting Italian GDP growth with epidemiological data," Questioni di Economia e Finanza (Occasional Papers) 664, Bank of Italy, Economic Research and International Relations Area.
    10. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    11. Glover, Andrew & Heathcote, Jonathan & Krueger, Dirk, 2022. "Optimal age-Based vaccination and economic mitigation policies for the second phase of the covid-19 pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    12. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    13. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    14. Yinon Bar-On & Tatiana Baron & Ofer Cornfeld & Eran Yashiv, 2023. "When to Lock, Not Whom: Managing Epidemics Using Time-Based Restrictions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 292-321, December.
    15. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    16. Hosoya, Kei, 2023. "Impact of infectious disease pandemics on individual lifetime consumption: An endogenous time preference approach," Journal of Macroeconomics, Elsevier, vol. 76(C).
    17. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    18. Aspri, Andrea & Beretta, Elena & Gandolfi, Alberto & Wasmer, Etienne, 2021. "Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    19. Janssen, Aljoscha & Shapiro, Matthew H., 2021. "Does precise case disclosure limit precautionary behavior? Evidence from COVID-19 in Singapore," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 700-714.
    20. Holger Strulik & Volker Grossmann, 2022. "Life Cycle Economics with Infectious and Chronic Diseases," CESifo Working Paper Series 10141, CESifo.

    More about this item

    JEL classification:

    • H12 - Public Economics - - Structure and Scope of Government - - - Crisis Management
    • H51 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Health
    • I10 - Health, Education, and Welfare - - Health - - - General
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:27597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.