Advanced Search
MyIDEAS: Login

Jackknife Instrumental Variables Estimation

Contents:

Author Info

  • Joshua D. Angrist
  • Guido W. Imbens
  • Alan Krueger

Abstract

Two-stage-least-squares (2SLS) estimates are biased towards OLS estimates. This bias grows with the degree of over-identification and can generate highly misleading results. In this paper we propose two simple alternatives to 2SLS and limited-information-maximum-likelihood (LIML) estimators for models with more instruments than endogenous regressors. These estimators can be interpreted as instrumental variables procedures using an instrument that is independent of disturbances even in finite samples. Independence is achieved by using a `leave-one-out' jackknife-type fitted value in place of the usual first-stage equation. The new estimators are first-order equivalent to 2SLS but with finite-sample properties superior to those of 2SLS and similar to LIML when there are many instruments. Moreover, the jackknife estimators appear to be less sensitive than LIML to deviations from the linear reduced form used in classical simultaneous equations models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nber.org/papers/t0172.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0172.

as in new window
Length:
Date of creation: Feb 1995
Date of revision:
Publication status: published as Journal of Applied Econometrics, Vol. 14, no. 1 (January-February 1999): 57-67.
Handle: RePEc:nbr:nberte:0172

Note: LS
Contact details of provider:
Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Email:
Web page: http://www.nber.org
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sawa, Takamitsu, 1973. "Almost Unbiased Estimator in Simultaneous Equations Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(1), pages 97-106, February.
  2. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-83, January.
  3. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-81, May.
  4. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
  5. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  6. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages S125-40, January.
  7. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-36, June.
  8. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516 Elsevier.
  9. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  10. Joshua D. Angrist & Alan B. Krueger, 1990. "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples," NBER Working Papers 3571, National Bureau of Economic Research, Inc.
  11. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
  12. Angrist, Joshua D & Krueger, Alan B, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, MIT Press, vol. 106(4), pages 979-1014, November.
  13. Joshua Angrist & Alan Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
  14. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-66, July.
  15. Stoker, Thomas M., 1996. "Smoothing bias in the measurement of marginal effects," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 49-84.
  16. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-80, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0172. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.