Advanced Search
MyIDEAS: Login

Guilbaud's Theorem : an early contribution to judgment aggregation

Contents:

Author Info

Abstract

In a paper published in 1952, the French matematician Georges-Théodule Guilbaud has generalized Arrow's impossibility result to the "logical problem of aggregation", thus anticipating the literature on abstract aggregation theory and judgment aggregation. We reconstruct the proof of Guilbaud's theorem, which is also of technical interest, because it can be seen as the first use of ultrafilters in social choice theory.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09047.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne in its series Documents de travail du Centre d'Economie de la Sorbonne with number 09047.

as in new window
Length: 21 pages
Date of creation: Jun 2009
Date of revision:
Handle: RePEc:mse:cesdoc:09047

Contact details of provider:
Postal: 106-112 boulevard de l'Hôpital 75 647 PARIS CEDEX 13
Phone: + 33 44 07 81 00
Fax: + 33 1 44 07 83 01
Web page: http://centredeconomiesorbonne.univ-paris1.fr/
More information through EDIRC

Related research

Keywords: Arrow's theorem; aggregation rule; judgment aggregation; logical connexions; simple game; ultrafilter.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Philippe Mongin, 2012. "The doctrinal paradox, the discursive dilemma, and logical aggregation theory," Theory and Decision, Springer, vol. 73(3), pages 315-355, September.
  2. Mongin, Philippe & Dietrich, Franz, 2011. "An interpretive account of logical aggregation theory," Les Cahiers de Recherche 941, HEC Paris.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09047. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.