Advanced Search
MyIDEAS: Login

Judgment aggregators and Boolean algebra homomorphisms

Contents:

Author Info

  • Herzberg, Frederik

Abstract

The theory of Boolean algebras can be fruitfully applied to judgment aggregation: assuming universality, systematicity and a sufficiently rich agenda, there is a correspondence between (i) non-trivial deductively closed judgment aggregators and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Furthermore, there is a correspondence between (i) consistent complete judgment aggregators and (ii) 2-valued Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Since the shell of such a homomorphism equals the set of winning coalitions and since (ultra)filters are shells of (2-valued) Boolean algebra homomorphisms, we suggest an explanation for the effectiveness of the (ultra)filter method in social choice theory. From the (ultra)filter property of the set of winning coalitions, one obtains two general impossibility theorems for judgment aggregation on finite electorates, even without assuming the Pareto principle.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VBY-4WM756H-4/2/c56b919f55050ef0686482716681f7ca
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 46 (2010)
Issue (Month): 1 (January)
Pages: 132-140

as in new window
Handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:132-140

Contact details of provider:
Web page: http://www.elsevier.com/locate/jmateco

Related research

Keywords: Judgment aggregation Systematicity Impossibility theorems Filter Ultrafilter Boolean algebra homomorphism;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.
  2. Franz Dietrich & Christian List, 2008. "Judgment aggregation without full rationality," Social Choice and Welfare, Springer, vol. 31(1), pages 15-39, June.
  3. Brown, Donald J, 1975. "Aggregation of Preferences," The Quarterly Journal of Economics, MIT Press, vol. 89(3), pages 456-69, August.
  4. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
  5. Dietrich, Franz & Mongin Philippe, 2008. "The Premiss-Based Approach to Judgment Aggregation," Research Memorandum 013, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  6. Dietrich, Franz & Mongin Philippe, 2008. "The Premiss-Based Approach to Judgment Aggregation," Research Memorandum 013, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Philippe Mongin, 2012. "The doctrinal paradox, the discursive dilemma, and logical aggregation theory," Theory and Decision, Springer, vol. 73(3), pages 315-355, September.
  2. Mongin, Philippe & Dietrich, Franz, 2011. "An interpretive account of logical aggregation theory," Les Cahiers de Recherche 941, HEC Paris.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:132-140. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.