IDEAS home Printed from https://ideas.repec.org/p/mns/wpaper/wp201409.html
   My bibliography  Save this paper

Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules

Author

Listed:
  • Michael Redlinger

    (Division of Economics and Business, Colorado School of Mines)

  • Roderick Eggert

    (Division of Economics and Business, Colorado School of Mines)

  • Michael Woodhouse

    (National Renewable Energy Laboratory)

Abstract

The use of thin-film copper indium gallium (di)selenide (CIGS) and cadmium-telluride (CdTe) in solar technologies has grown rapidly in recent years, leading to an increased demand for gallium, indium, and tellurium. In the coming years, recycling these elements from end-of-life photovoltaic (PV) modules may be an important part of their overall supply, but little is known about the economic feasibility and the potential quantities available. This article investigates the future role of PV recycling in supplying gallium, indium, and tellurium. The authors evaluate both the quantities available from recycling over the next century and the associated costs for recycling modules and reusing each mineral in PV manufacturing. The findings indicate that, in terms of technical potential, there may be significant quantities of each mineral potentially available from recycling CIGS and CdTe modules. In terms of costs, recovering each element from end-of-life PV modules and reusing it in PV manufacturing is estimated to cost more than the current raw mineral costs. These findings help improve the understanding of recycling's role in enabling higher levels of CIGS and CdTe cell production.

Suggested Citation

  • Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
  • Handle: RePEc:mns:wpaper:wp201409
    as

    Download full text from publisher

    File URL: http://econbus-papers.mines.edu/working-papers/wp201409.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    2. Fthenakis, Vasilis M., 2004. "Life cycle impact analysis of cadmium in CdTe PV production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 303-334, August.
    3. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    4. Jun‐Ki Choi & Vasilis Fthenakis, 2010. "Economic Feasibility of Recycling Photovoltaic Modules," Journal of Industrial Ecology, Yale University, vol. 14(6), pages 947-964, December.
    5. Fthenakis, Vasilis M., 2000. "End-of-life management and recycling of PV modules," Energy Policy, Elsevier, vol. 28(14), pages 1051-1058, November.
    6. McDonald, N.C. & Pearce, J.M., 2010. "Producer responsibility and recycling solar photovoltaic modules," Energy Policy, Elsevier, vol. 38(11), pages 7041-7047, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    2. Divya Tiwari & Jill Miscandlon & Ashutosh Tiwari & Geraint W. Jewell, 2021. "A Review of Circular Economy Research for Electric Motors and the Role of Industry 4.0 Technologies," Sustainability, MDPI, vol. 13(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    2. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    3. Fthenakis, Vasilis & Athias, Clement & Blumenthal, Alyssa & Kulur, Aylin & Magliozzo, Julia & Ng, David, 2020. "Sustainability evaluation of CdTe PV: An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    5. Tammaro, Marco & Rimauro, Juri & Fiandra, Valeria & Salluzzo, Antonio, 2015. "Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes," Renewable Energy, Elsevier, vol. 81(C), pages 103-112.
    6. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.
    7. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    8. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    9. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    10. Goe, Michele & Gaustad, Gabrielle, 2014. "Identifying critical materials for photovoltaics in the US: A multi-metric approach," Applied Energy, Elsevier, vol. 123(C), pages 387-396.
    11. Cyrs, William D. & Avens, Heather J. & Capshaw, Zachary A. & Kingsbury, Robert A. & Sahmel, Jennifer & Tvermoes, Brooke E., 2014. "Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels," Energy Policy, Elsevier, vol. 68(C), pages 524-533.
    12. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    13. Kavlak, Goksin & Graedel, T.E., 2013. "Global anthropogenic tellurium cycles for 1940–2010," Resources, Conservation & Recycling, Elsevier, vol. 76(C), pages 21-26.
    14. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    15. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    16. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    17. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    18. Raugei, Marco & Fthenakis, Vasilis, 2010. "Cadmium flows and emissions from CdTe PV: future expectations," Energy Policy, Elsevier, vol. 38(9), pages 5223-5228, September.
    19. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    20. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mns:wpaper:wp201409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jared Carbone (email available below). General contact details of provider: https://edirc.repec.org/data/decsmus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.