Advanced Search
MyIDEAS: Login to save this paper or follow this series

Methodological overview of Rasch model and application in customer satisfaction survey data

Contents:

Author Info

  • Francesca DE BATTISTI

    ()

  • Giovanna NICOLINI

    ()

  • Silvia SALINI

    ()

Abstract

This paper deals with the measurement of a service or product quality using Customer Satisfaction Survey results. Many different methods are used to analyse customer satisfaction data. Some use statistical models which estimate the relationship between the latent and manifest variables (LISREL, PLS, etc. ), whilst others use dimensionality reduction methods (FA, PCA, etc. ). All of these methods require a numerical quantification of the categories and consequently the distance between the numerical labels is fixed and the linear relationship between the variables implicitly assumed. Moreover these methods produce a customer satisfaction measure for each subject and an evaluation of its importance on the satisfaction level for each item. When analyzing quality and satisfaction levels together, the Rasch model (RM) appears to be particularly appropriate. A Likert scale is not required and non-linear relationships are involved. Moreover, a Rasch analysis can also act as a useful diagnostic tool for calibrating the questionnaire itself. In this paper we will present three different applications of the Rasch Model for the purposes of measuring quality and customer satisfaction levels. For each technique we will highlight its peculiarities, give an interpretation of the parameters used, analyse the model’s fit with the data and perform a critical analysis of the results.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://wp.demm.unimi.it/tl_files/wp/2008/DEMM-2008_004wp.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano in its series Departmental Working Papers with number 2008-04.

as in new window
Length:
Date of creation: 29 Feb 2008
Date of revision:
Handle: RePEc:mil:wpdepa:2008-04

Contact details of provider:
Postal: Via Conservatorio 7, I-20122 Milan - Italy
Phone: +39 02 50321522
Fax: +39 02 50321505
Web page: http://www.demm.unimi.it
More information through EDIRC

Related research

Keywords: Latent trait model; data reduction methods; ordinal variables;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2008-04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEMM Working Papers) The email address of this maintainer does not seem to be valid anymore. Please ask DEMM Working Papers to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.