Advanced Search
MyIDEAS: Login

Multilevel structured additive regression

Contents:

Author Info

  • Stefan Lang

    ()

  • Nikolaus Umlauf

    ()

  • Peter Wechselberger

    ()

  • Kenneth Harttgen

    ()

  • Thomas Kneib

    ()

Abstract

Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type. In this paper, we propose a hierarchical or multilevel version of regression models with structured additive predictor where the regression coefficients of a particular nonlinear term may obey another regression model with structured additive predictor. In that sense, the model is composed of a hierarchy of complex structured additive regression models. The proposed model may be regarded as an extended version of a multilevel model with nonlinear covariate terms in every level of the hierarchy. The model framework is also the basis for generalized random slope modeling based on multiplicative random effects. Inference is fully Bayesian and based on Markov chain Monte Carlo simulation techniques. We provide an in depth description of several highly efficient sampling schemes that allow to estimate complex models with several hierarchy levels and a large number of observations within a couple of minutes (often even seconds). We demonstrate the practicability of the approach in a complex application on childhood undernutrition with large sample size and three hierarchy levels.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/2012-07.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Faculty of Economics and Statistics, University of Innsbruck in its series Working Papers with number 2012-07.

as in new window
Length: 42
Date of creation: Apr 2012
Date of revision:
Handle: RePEc:inn:wpaper:2012-07

Contact details of provider:
Postal: Universitätsstraße 15, A - 6020 Innsbruck
Phone: 0512/507-7151
Fax: 0512/507-2788
Email:
Web page: http://www.uibk.ac.at/fakultaeten/volkswirtschaft_und_statistik/index.html.en
More information through EDIRC

Related research

Keywords: Bayesian hierarchical models; kriging; Markov random fields; MCMC; multiplicative random effects; P-splines;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
  2. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
  3. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer, vol. 64(3), pages 577-613, June.
  4. H�vard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392.
  5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, November.
  6. Cottet, Remy & Kohn, Robert J. & Nott, David J., 2008. "Variable Selection and Model Averaging in Semiparametric Overdispersed Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 661-671, June.
  7. Malavika A Subramanyam & Ichiro Kawachi & Lisa F Berkman & S V Subramanian, 2011. "Is Economic Growth Associated with Reduction in Child Undernutrition in India?," Working Papers id:3926, eSocialSciences.
  8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, November.
  9. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
  10. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
  11. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
  12. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
  13. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, University of Innsbruck.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2012-07. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janette Walde).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.