Advanced Search
MyIDEAS: Login

Computational techniques for spatial logistic regression with large data sets

Contents:

Author Info

  • Paciorek, Christopher J.
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-4MG6JWS-2/2/dfe5cd9c7ac7bc39d22ce45eebe303b8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 51 (2007)
    Issue (Month): 8 (May)
    Pages: 3631-3653

    as in new window
    Handle: RePEc:eee:csdana:v:51:y:2007:i:8:p:3631-3653

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
    2. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    3. P. J. Lenk, 1999. "Bayesian inference for semiparametric regression using a Fourier representation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 863-879.
    4. Long Ngo & Matthew P. Wand, . "Smoothing with Mixed Model Software," Journal of Statistical Software, American Statistical Association, vol. 9(i01).
    5. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    6. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114.
    7. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    8. Leonhard Knorr-Held, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 29(4), pages 597-614.
    9. C. G. Wager & B. A. Coull & N. Lange, 2004. "Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 429-446.
    10. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    11. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    12. Sally A. Wood, 2002. "Bayesian mixture of splines for spatially adaptive nonparametric regression," Biometrika, Biometrika Trust, vol. 89(3), pages 513-528, August.
    13. H�vard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892.
    14. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    15. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
    2. Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
    3. Berrett, Candace & Calder, Catherine A., 2012. "Data augmentation strategies for the Bayesian spatial probit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 478-490.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:8:p:3631-3653. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.