Advanced Search
MyIDEAS: Login to save this paper or follow this series

Statistical treatment rules for heterogeneous populations

Contents:

Author Info

  • Charles Manski

Abstract

An important objective of empirical research on treatment response is to provide decision makers with information useful in choosing treatments. Manski (2000, 2002, 2003) showed how identification problems generate ambiguity about the identity of optimal treatment choices. This paper studies treatment choice using sample data. I consider a planner who must choose among alternative statistical treatment rules, these being functions that map observed covariates of population members and sample data on treatment response into a treatment allocation. I study the use of risk (Wald, 1950) to evaluate the performance of alternative rules and, more particularly, the minimax-regret criterion to choose a treatment rule. These concepts may also be used to choose a sample design. Wald's development of statistical decision theory directly confronts the problem of finite-sample inference without recourse to the approximations of asymptotic theory. However, it is computationally challenging to implement. The main original work of this paper is to study implementation using data from a classical randomized experiment. Analysis of a simple problem of evaluation of an innovation yields a concise description of the set of undominated treatment rules and tractable computation of the minimax-regret rule. Analysis of a more complex problem of treatment choice using covariate information yields computable bounds on the maximum regret of alternative conditional empirical success rules, and consequent sufficient sample sizes for the beneficial use of covariate information. Numerical findings indicate that prevailing practices in the use of covariate information in treatment choice are too conservative.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cemmap.ifs.org.uk/wps/cwp0303.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP03/03.

as in new window
Length: 53 pp.
Date of creation: May 2003
Date of revision:
Handle: RePEc:ifs:cemmap:03/03

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rajeev H. Dehejia, 2002. "Program evaluation as a decision problem," Discussion Papers 0102-23, Columbia University, Department of Economics.
  2. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:03/03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.