IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.02988.html
   My bibliography  Save this paper

Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds

Author

Listed:
  • Masahiro Kato
  • Masaaki Imaizumi
  • Takuya Ishihara
  • Toru Kitagawa

Abstract

We investigate the problem of fixed-budget best arm identification (BAI) for minimizing expected simple regret. In an adaptive experiment, a decision maker draws one of multiple treatment arms based on past observations and observes the outcome of the drawn arm. After the experiment, the decision maker recommends the treatment arm with the highest expected outcome. We evaluate the decision based on the expected simple regret, which is the difference between the expected outcomes of the best arm and the recommended arm. Due to inherent uncertainty, we evaluate the regret using the minimax criterion. First, we derive asymptotic lower bounds for the worst-case expected simple regret, which are characterized by the variances of potential outcomes (leading factor). Based on the lower bounds, we propose the Two-Stage (TS)-Hirano-Imbens-Ridder (HIR) strategy, which utilizes the HIR estimator (Hirano et al., 2003) in recommending the best arm. Our theoretical analysis shows that the TS-HIR strategy is asymptotically minimax optimal, meaning that the leading factor of its worst-case expected simple regret matches our derived worst-case lower bound. Additionally, we consider extensions of our method, such as the asymptotic optimality for the probability of misidentification. Finally, we validate the proposed method's effectiveness through simulations.

Suggested Citation

  • Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2302.02988
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.02988
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    2. Karlan, Dean & Wood, Daniel H., 2017. "The effect of effectiveness: Donor response to aid effectiveness in a direct mail fundraising experiment," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 66(C), pages 1-8.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    5. Karun Adusumilli, 2021. "Risk and optimal policies in bandit experiments," Papers 2112.06363, arXiv.org, revised Jan 2024.
    6. Masahiro Kato & Shota Yasui & Kenichiro McAlinn, 2020. "The Adaptive Doubly Robust Estimator for Policy Evaluation in Adaptive Experiments and a Paradox Concerning Logging Policy," Papers 2010.03792, arXiv.org, revised Jun 2021.
    7. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    8. Dominitz, Jeff & Manski, Charles F., 2022. "Minimax-regret sample design in anticipation of missing data, with application to panel data," Journal of Econometrics, Elsevier, vol. 226(1), pages 104-114.
    9. Shantanu Gupta & Zachary C. Lipton & David Childers, 2021. "Efficient Online Estimation of Causal Effects by Deciding What to Observe," Papers 2108.09265, arXiv.org, revised Oct 2021.
    10. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    11. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    12. Jeff Dominitz & Charles F. Manski, 2017. "More Data or Better Data? A Statistical Decision Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(4), pages 1583-1605.
    13. Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
    14. Masahiro Kato & Kaito Ariu, 2021. "The Role of Contextual Information in Best Arm Identification," Papers 2106.14077, arXiv.org, revised Feb 2024.
    15. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    16. Gilles Stoltz & Sébastien Bubeck & Rémi Munos, 2011. "Pure exploration in finitely-armed and continuous-armed bandits," Post-Print hal-00609550, HAL.
    17. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    18. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    19. Kaito Ariu & Masahiro Kato & Junpei Komiyama & Kenichiro McAlinn & Chao Qin, 2021. "Policy Choice and Best Arm Identification: Asymptotic Analysis of Exploration Sampling," Papers 2109.08229, arXiv.org, revised Nov 2021.
    20. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masahiro Kato & Akihiro Oga & Wataru Komatsubara & Ryo Inokuchi, 2024. "Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices," Papers 2403.03589, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2022. "Best Arm Identification with Contextual Information under a Small Gap," Papers 2209.07330, arXiv.org, revised Jan 2023.
    2. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised Dec 2023.
    3. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    4. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    5. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    6. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    7. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    8. Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
    9. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    10. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    11. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Feb 2024.
    12. Masahiro Kato, 2023. "Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a Fixed Budget," Papers 2310.19788, arXiv.org, revised Mar 2024.
    13. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    14. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    15. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    16. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    17. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    18. Juliano Assunção & Robert McMillan & Joshua Murphy & Eduardo Souza-Rodrigues, 2019. "Optimal Environmental Targeting in the Amazon Rainforest," NBER Working Papers 25636, National Bureau of Economic Research, Inc.
    19. Masahiro Kato, 2021. "Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability," Papers 2102.08975, arXiv.org, revised Mar 2021.
    20. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.02988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.