IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.05127.html
   My bibliography  Save this paper

Stratification Trees for Adaptive Randomization in Randomized Controlled Trials

Author

Listed:
  • Max Tabord-Meehan

Abstract

This paper proposes an adaptive randomization procedure for two-stage randomized controlled trials. The method uses data from a first-wave experiment in order to determine how to stratify in a second wave of the experiment, where the objective is to minimize the variance of an estimator for the average treatment effect (ATE). We consider selection from a class of stratified randomization procedures which we call stratification trees: these are procedures whose strata can be represented as decision trees, with differing treatment assignment probabilities across strata. By using the first wave to estimate a stratification tree, we simultaneously select which covariates to use for stratification, how to stratify over these covariates, as well as the assignment probabilities within these strata. Our main result shows that using this randomization procedure with an appropriate estimator results in an asymptotic variance which is minimal in the class of stratification trees. Moreover, the results we present are able to accommodate a large class of assignment mechanisms within strata, including stratified block randomization. In a simulation study, we find that our method, paired with an appropriate cross-validation procedure ,can improve on ad-hoc choices of stratification. We conclude by applying our method to the study in Karlan and Wood (2017), where we estimate stratification trees using the first wave of their experiment.

Suggested Citation

  • Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:1806.05127
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.05127
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    2. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    3. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2017. "Using Instrumental Variables for Inference about Policy Relevant Treatment Effects," NBER Working Papers 23568, National Bureau of Economic Research, Inc.
    4. Karlan, Dean & Wood, Daniel H., 2017. "The effect of effectiveness: Donor response to aid effectiveness in a direct mail fundraising experiment," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 66(C), pages 1-8.
    5. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    6. Esther Duflo & Pascaline Dupas & Michael Kremer, 2015. "Education, HIV, and Early Fertility: Experimental Evidence from Kenya," American Economic Review, American Economic Association, vol. 105(9), pages 2757-2797, September.
    7. Nathan Kallus, 2018. "Optimal a priori balance in the design of controlled experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 85-112, January.
    8. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    9. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    10. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    11. Rachel Glennerster & Kudzai Takavarasha, 2013. "Running Randomized Evaluations: A Practical Guide," Economics Books, Princeton University Press, edition 1, number 10085.
    12. Ali Hasanain & Saad Gulzar & Arman Rezaee & Yasir Khan, 2015. "Personalities and Public Sector Performance: Evidence from a Health Experiment in Pakistan," Working Papers id:6690, eSocialSciences.
    13. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    14. Kasy, Maximilian, 2016. "Why Experimenters Might Not Always Want to Randomize, and What They Could Do Instead," Political Analysis, Cambridge University Press, vol. 24(3), pages 324-338, July.
    15. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    16. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    17. Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    2. Federico A. Bugni & Mengsi Gao, 2021. "Inference under Covariate-Adaptive Randomization with Imperfect Compliance," Papers 2102.03937, arXiv.org, revised Jul 2023.
    3. Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2020. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," Cowles Foundation Discussion Papers 2249, Cowles Foundation for Research in Economics, Yale University.
    4. Ahnaf Rafi, 2023. "Efficient Semiparametric Estimation of Average Treatment Effects Under Covariate Adaptive Randomization," Papers 2305.08340, arXiv.org.
    5. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    6. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    7. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    8. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised Dec 2023.
    9. Harrison H. Li & Art B. Owen, 2023. "Double machine learning and design in batch adaptive experiments," Papers 2309.15297, arXiv.org.
    10. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    11. Rosenman Evan T. R. & Owen Art B., 2021. "Designing experiments informed by observational studies," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 147-171, January.
    12. Masahiro Kato & Akihiro Oga & Wataru Komatsubara & Ryo Inokuchi, 2024. "Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices," Papers 2403.03589, arXiv.org.
    13. Masahiro Kato, 2023. "Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a Fixed Budget," Papers 2310.19788, arXiv.org, revised Mar 2024.
    14. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    15. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," American Economic Review, American Economic Association, vol. 112(12), pages 3911-3940, December.
    16. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    17. Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Papers 2201.13004, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aufenanger, Tobias, 2018. "Treatment allocation for linear models," FAU Discussion Papers in Economics 14/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2018.
    2. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    3. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    4. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    5. Abhijit Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2017. "A Theory of Experimenters," CESifo Working Paper Series 6678, CESifo.
    6. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    7. Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
    8. Le-Yu Chen & Sokbae Lee, 2018. "High Dimensional Classification through $\ell_0$-Penalized Empirical Risk Minimization," Papers 1811.09540, arXiv.org.
    9. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    10. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    11. Aufenanger, Tobias, 2017. "Machine learning to improve experimental design," FAU Discussion Papers in Economics 16/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    12. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    13. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    14. Yusuke Narita, 2018. "Experiment-as-Market: Incorporating Welfare into Randomized Controlled Trials," Cowles Foundation Discussion Papers 2127r, Cowles Foundation for Research in Economics, Yale University, revised May 2019.
    15. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    16. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    17. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2020. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," Papers 2005.11967, arXiv.org, revised May 2021.
    18. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    19. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    20. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.05127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.