Advanced Search
MyIDEAS: Login

Forecasting Macroeconomic Time Series With Locally Adaptive Signal Extraction

Contents:

Author Info

  • Giordani, Paolo

    ()
    (Research Department, Central Bank of Sweden)

  • Villani, Mattias

    (Research Department, Central Bank of Sweden)

Abstract

We introduce a non-Gaussian dynamic mixture model for macroeconomic forecasting. The Locally Adaptive Signal Extraction and Regression (LASER) model is designed to capture relatively persistent AR processes (signal) contaminated by high frequency noise. The distribution of the innovations in both noise and signal is robustly modeled using mixtures of normals. The mean of the process and the variances of the signal and noise are allowed to shift suddenly or gradually at unknown locations and number of times. The model is then capable of capturing movements in the mean and conditional variance of a series as well as in the signal-to-noise ratio. Four versions of the model are used to forecast six quarterly US and Swedish macroeconomic series. We conclude that (i) allowing for infrequent and large shifts in mean while imposing normal iid errors often leads to erratic forecasts, (ii) such shifts/breaks versions of the model can forecast well if robustified by allowing for non-normal errors and time varying variances, (iii) infrequent and large shifts in error variances outperform smooth and continuous shifts substantially when it comes to interval coverage, (iv) for point forecasts, robust time varying specifications improve slightly upon fixed parameter specifications on average, but the relative performances can differ sizably in various sub-samples, v) for interval forecasts, robust versions that allow for infrequent shifts in variances perform substantially and consistently better than time invariant specifications.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.riksbank.se/upload/Dokument_riksbank/Kat_publicerat/WorkingPapers/2009/wp234.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sveriges Riksbank (Central Bank of Sweden) in its series Working Paper Series with number 234.

as in new window
Length: 26 pages
Date of creation: 01 Oct 2009
Date of revision:
Handle: RePEc:hhs:rbnkwp:0234

Contact details of provider:
Postal: Sveriges Riksbank, SE-103 37 Stockholm, Sweden
Phone: 08 - 787 00 00
Fax: 08-21 05 31
Email:
Web page: http://www.riksbank.com/
More information through EDIRC

Related research

Keywords: Bayesian inferene; Foreast evaluation; Regime swithing; State-space modeling; Dynamic Mixture models;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, 02.
  2. James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
  3. Bessec Marie & Bouabdallah Othman, 2005. "What Causes The Forecasting Failure of Markov-Switching Models? A Monte Carlo Study," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-24, June.
  4. Gary Koop & Simon M. Potter, 2007. "Prior Elicitation in Multiple Change-point Models," Working Paper Series 17-07, The Rimini Centre for Economic Analysis, revised Jul 2007.
  5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  6. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
  7. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  8. Granger, Clive W.J. & Hyung, Namwon, 1999. "Occasional Structural Breaks and Long Memory," University of California at San Diego, Economics Working Paper Series qt4d60t4jh, Department of Economics, UC San Diego.
  9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
  2. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
  3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
  4. Yuelin Liu & James Morley, 2013. "Structural Evolution of the Postwar U.S. Economy," Discussion Papers 2013-15, School of Economics, The University of New South Wales.
  5. Luiz Renato Regis de Oliveira Lima & Wagner Piazza Gaglianone, 2012. "Constructing Optimal Density Forecasts from Point Forecast Combinations," Série Textos para Discussão (Working Papers) 5, Programa de Pós-Graduação em Economia - PPGE, Universidade Federal da Paraíba.
  6. Bulkley, George & Giordani, Paolo, 2011. "Structural breaks, parameter uncertainty, and term structure puzzles," Journal of Financial Economics, Elsevier, vol. 102(1), pages 222-232, October.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hhs:rbnkwp:0234. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lena Löfgren).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.