Advanced Search
MyIDEAS: Login to save this paper or follow this series

On the Geometry of Interest Rate Models

Contents:

Author Info

  • Björk, Tomas

    ()
    (Dept. of Finance, Stockholm School of Economics)

Registered author(s):

    Abstract

    In this paper, which is a substantial extension of the earlier essay Björk (2001), we give an overview of some recent work on the geometric properties of the evolution of the forward rate curve in an arbitrage free bond market. The main problems to be discussed are as follows. 1. When is a given forward rate model consistent with a given family of forward rate curves? 2. When can the inherently infinite dimensional forward rate process be realized by means of a Markovian finite dimensional state space model. We consider interest rate models of Heath-Jarrow-Morton type, where the forward rates are driven by a multidimensional Wiener process, and where he volatility is allowed to be an arbitrary smooth functional of the present forward rate curve. Within this framework we give necessary and sufficient conditions for consistency, as well as for the existence of a finite dimensional realization, in terms of the forward rate volatilities. We also study stochastic volatility HJM models, and we provide a systematic method for the construction of concrete realizations.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://swopec.hhs.se/hastef/papers/hastef0545.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Stockholm School of Economics in its series Working Paper Series in Economics and Finance with number 545.

    as in new window
    Length: 87 pages
    Date of creation: 24 Nov 2003
    Date of revision:
    Handle: RePEc:hhs:hastef:0545

    Note: To apppear in "Springer Lecture Notes in Mathematics"
    Contact details of provider:
    Postal: The Economic Research Institute, Stockholm School of Economics, P.O. Box 6501, 113 83 Stockholm, Sweden
    Phone: +46-(0)8-736 90 00
    Fax: +46-(0)8-31 01 57
    Email:
    Web page: http://www.hhs.se/
    More information through EDIRC

    Related research

    Keywords: Forward rate curves; interest rate models; factor models; state space models; Markovian realizations;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    2. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53.
    3. Ram Bhar & Carl Chiarella, 1995. "Transformation of Heath-Jarrow-Morton Models to Markovian Systems," Working Paper Series 53, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    4. Carl Chiarella & Oh-Kang Kwon, 1999. "Forward Rate Dependent Markovian Transformations of the Heath-Jarrow-Morton Term Structure Model," Research Paper Series 5, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Tomas BjÃrk & Andrea Gombani, 1999. "Minimal realizations of interest rate models," Finance and Stochastics, Springer, vol. 3(4), pages 413-432.
    6. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348.
    7. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
    8. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    9. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
    10. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
    11. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
    12. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 06 May 2002.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.