IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/93414.html
   My bibliography  Save this paper

Corporate Disclosure: Facts or Opinions?

Author

Listed:

Abstract

A large body of literature documents the link between textual communication (e.g., news articles, earnings calls) and firm fundamentals, either through pre-defined “sentiment” dictionaries or through machine learning approaches. Surprisingly, little is known about why textual communication matters. In this paper, we take a step in that direction by developing a new methodology to automatically classify statements into objective (“facts”) and subjective (“opinions”) and apply it to transcripts of earnings calls. The large scale estimation suggests several novel results: (1) Facts and opinions are both prominent parts of corporate disclosure, taking up roughly equal parts, (2) higher prevalence of opinions is associated with investor disagreement, (3) anomaly returns are realized around the disclosure of opinions rather than facts, and (4) facts have a much stronger correlation with contemporaneous financial performance but facts and opinions have an equally strong association with financial results for the next quarter.

Suggested Citation

  • Shimon Kogan & Vitaly Meursault, 2021. "Corporate Disclosure: Facts or Opinions?," Working Papers 21-40, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:93414
    DOI: 10.21799/frbp.wp.2021.40
    as

    Download full text from publisher

    File URL: https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/2021/wp21-40.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.21799/frbp.wp.2021.40?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    2. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    3. Tim Loughran & Bill McDonald, 2020. "Textual Analysis in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 12(1), pages 357-375, December.
    4. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    5. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    6. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    7. Joseph Engelberg & R. David Mclean & Jeffrey Pontiff, 2018. "Anomalies and News," Journal of Finance, American Finance Association, vol. 73(5), pages 1971-2001, October.
    8. Joshua Livnat & Richard R. Mendenhall, 2006. "Comparing the Post–Earnings Announcement Drift for Surprises Calculated from Analyst and Time Series Forecasts," Journal of Accounting Research, Wiley Blackwell, vol. 44(1), pages 177-205, March.
    9. Volkan Muslu & Suresh Radhakrishnan & K. R. Subramanyam & Dongkuk Lim, 2015. "Forward-Looking MD&A Disclosures and the Information Environment," Management Science, INFORMS, vol. 61(5), pages 931-948, May.
    10. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    11. Harrison Hong & Jeremy C. Stein, 2007. "Disagreement and the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 109-128, Spring.
    12. J. Anthony Cookson & Marina Niessner, 2020. "Why Don't We Agree? Evidence from a Social Network of Investors," Journal of Finance, American Finance Association, vol. 75(1), pages 173-228, February.
    13. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    2. Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. García, Diego & Hu, Xiaowen & Rohrer, Maximilian, 2023. "The colour of finance words," Journal of Financial Economics, Elsevier, vol. 147(3), pages 525-549.
    4. Han, Yufeng & Huang, Dashan & Huang, Dayong & Zhou, Guofu, 2022. "Expected return, volume, and mispricing," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1295-1315.
    5. Ferdinand Graf, 2011. "Mechanically Extracted Company Signals and their Impact on Stock and Credit Markets," Working Paper Series of the Department of Economics, University of Konstanz 2011-18, Department of Economics, University of Konstanz.
    6. Özgür Arslan‐Ayaydin & James Thewissen & Wouter Torsin, 2021. "Disclosure tone management and labor unions," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 48(1-2), pages 102-147, January.
    7. Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Alejandro Bernales & Marcela Valenzuela & Ilknur Zer, 2023. "Effects of Information Overload on Financial Markets: How Much Is Too Much?," International Finance Discussion Papers 1372, Board of Governors of the Federal Reserve System (U.S.).
    9. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    10. repec:hal:journl:hal-04660083 is not listed on IDEAS
    11. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    12. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    13. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    14. Narayan, Paresh Kumar, 2019. "Can stale oil price news predict stock returns?," Energy Economics, Elsevier, vol. 83(C), pages 430-444.
    15. Consoli, Sergio & Pezzoli, Luca Tiozzo & Tosetti, Elisa, 2021. "Emotions in macroeconomic news and their impact on the European bond market," Journal of International Money and Finance, Elsevier, vol. 118(C).
    16. Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
    17. Tao, Ran & Brooks, Chris & Bell, Adrian R., 2020. "When is a MAX not the MAX? How news resolves information uncertainty," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 33-51.
    18. Bank, Matthias & Insam, Franz, 2021. "Corporate aging and changes in the pricing of stock characteristics," Finance Research Letters, Elsevier, vol. 42(C).
    19. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    20. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    21. Bowden, James & Gemayel, Roland, 2022. "Sentiment and trading decisions in an ambiguous environment: A study on cryptocurrency traders," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).

    More about this item

    Keywords

    Subjectivity; Machine Learning; NLP; Text Analysis;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:93414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.