IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/90481.html
   My bibliography  Save this paper

Price signatures

Author

Listed:
  • Oomen, Roel

Abstract

Price signatures are statistical measurements that aim to detect systematic patterns in price dynamics localised around the point of trade execution. They are particularly useful in electronic trading because they uncovermarket dynamics, strategy characteristics, implicit execution costs, or counter-party trading behaviours that are often hard to identify, in part due to the vast amounts of data involved and the typically low signal to noise ratio.Because the signature summarises price dynamics over a specified time interval, it constitutes a curve (rather than a point estimate) and because of potential overlap in the price paths it has a non-trivial dependence structure which complicates statistical inference. In this paper, I show how recent advances in functional data analysis can be applied to study the properties of these signatures. To account for data dependence, I analyse and develop resampling-based bootstrap methodologies that enable reliable statistical inference and hypothesis testing. I illustrate the power of this approach using a number of case studies taken from a live trading environment in the over-the-counter currency market. I demonstrate that functional data analysis of price signatures can be used to distinguish between internalising and externalising liquidity providers in a highly effective data driven manner. This in turn can help traders to selectively engage with liquidity providers whose risk management style best aligns with their execution objectives.

Suggested Citation

  • Oomen, Roel, 2018. "Price signatures," LSE Research Online Documents on Economics 90481, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:90481
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/90481/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    3. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    4. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    5. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    2. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    3. Huang, Wei-Hsueh & Huang, Li-Shan & Yang, Cheng-Tao, 2022. "Invariant tests for functional data with application to an earthquake impact study," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    5. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "A functional time series analysis of forward curves derived from commodity futures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
    6. Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
    7. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    8. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
    9. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    13. Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
    14. Horváth, Lajos & Rice, Gregory & Whipple, Stephen, 2016. "Adaptive bandwidth selection in the long run covariance estimator of functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 676-693.
    15. Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Jun 2021.
    16. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    17. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    18. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Shankhajyoti De & Arabin Kumar Dey & Deepak Kumar Gouda, 2022. "Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network," Annals of Data Science, Springer, vol. 9(2), pages 271-284, April.
    20. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.

    More about this item

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:90481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.