IDEAS home Printed from https://ideas.repec.org/p/ecr/col033/41812.html
   My bibliography  Save this paper

Promoting energy efficiency in government transportation systems: A transition roadmap and criteria for a readiness analysis

Author

Listed:
  • Flores, Adrián
  • Hidalgo Arellano, Marcos
  • Peralta Quesada, Leda

Abstract

The present study explores opportunities and challenges to increase energy efficiency in government vehicle fleets through electrification. It identifies international best practices in relation to fleet electrification, suggests the most suitable comprehensive approach for a fleet transition, and recommends the most immediate actions to deploy. Considering the leading role that the public sector plays in promoting the use of renewable energies and enhancing energy efficiency, the study presents a roadmap for government fleet transitions of vehicles that have equivalent alternatives in the market.

Suggested Citation

  • Flores, Adrián & Hidalgo Arellano, Marcos & Peralta Quesada, Leda, 2017. "Promoting energy efficiency in government transportation systems: A transition roadmap and criteria for a readiness analysis," Studies and Perspectives – ECLAC Subregional Headquarters for The Caribbean 41812, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
  • Handle: RePEc:ecr:col033:41812
    as

    Download full text from publisher

    File URL: http://repositorio.cepal.org/handle/11362/41812
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    2. Guerra, Sergio, 2016. "Energy efficiency policies in the Caribbean: a manual to guide the discussion," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 40459, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.
    2. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    3. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    4. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    5. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    6. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    7. Muhammed Alhanouti & Frank Gauterin, 2024. "A Generic Model for Accurate Energy Estimation of Electric Vehicles," Energies, MDPI, vol. 17(2), pages 1-21, January.
    8. Seongpil Cheon & Suk-Ju Kang, 2017. "An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(10), pages 1-13, October.
    9. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    10. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    11. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    12. Jasmina Pašagić Škrinjar & Borna Abramović & Lucija Bukvić & Željko Marušić, 2020. "Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    13. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    14. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    15. Ye Yang & Zhongfu Tan & Yilong Ren, 2020. "Research on Factors That Influence the Fast Charging Behavior of Private Battery Electric Vehicles," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    16. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2020. "A Method for the Optimization of Daily Activity Chains Including Electric Vehicles," Energies, MDPI, vol. 13(4), pages 1-21, February.
    17. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge-Juan Blanes-Peiró, 2020. "Contribution of Driving Efficiency and Vehicle-to-Grid to Eco-Design," Energies, MDPI, vol. 13(15), pages 1-29, August.
    18. Javier Romero Schmidt & Javier Eguren & Fernando Auat Cheein, 2019. "Profiling the Instantaneous Power Consumption of Electric Machinery in Agricultural Environments: An Algebraic Approach," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    19. Manfred Dollinger & Gerhard Fischerauer, 2021. "Model-Based Range Prediction for Electric Cars and Trucks under Real-World Conditions," Energies, MDPI, vol. 14(18), pages 1-27, September.
    20. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecr:col033:41812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca CEPAL (email available below). General contact details of provider: https://edirc.repec.org/data/eclaccl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.