Advanced Search
MyIDEAS: Login to save this paper or follow this series

Accelerated Asymptotics for Diffusion Model Estimation

Contents:

Author Info

  • Federico Bandi

    (University of Chicago)

  • Peter C. B. Phillips

    (Yale University)

Abstract

We propose a semiparametric estimation procedure for scalar homogeneous stochastic differential equations. We specify a parametric class for the underlying diffusion process and identify the parameters of interest by minimizing criteria given by the integrated squared difference between kernel estimates of drift and diffusion function and their parametric counterparts. The nonparametric estimates are simplified versions of those in Bandi and Phillips (1998). A complete asymptotic theory for the semiparametric estimates is developed. The limit theory relies on infill and long span asymptotics and the asymptotic distributions are shown to depend on the chronological local time of the underlying diffusion process. The estimation method and asymptotic results apply to both stationary and nonstationary processes. As is standard with semiparametric approaches in other contexts, faster convergence rates are attained than is possible in the fully functional case. From a purely technical point of view, this work merges two strands of the most recent econometrics literature, namely the estimation of nonlinear models of integrated time-series [Park and Phillips (1999, 2000)] and the functional identification of diffusions under minimal assumptions on the dynamics of the underlying process [Florens-Zmirou (1993), Jacod (1997), Bandi and Phillips (1998) and Bandi (1999)]. In effect, the 'minimum distance' type of estimation that is presented in this paper can be interpreted as extremum estimation for potentially nonstationary and nonlinear continuous-time models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://fmwww.bc.edu/RePEc/es2000/1656.pdf
File Function: main text
Download Restriction: no

Bibliographic Info

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 1656.

as in new window
Length:
Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:1656

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/pastmeetings.asp
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(05), pages 615-645, October.
  2. Donald W.K. Andrews, 1989. "Asymptotics for Semiparametric Econometric Models: III. Testing and Examples," Cowles Foundation Discussion Papers 910, Cowles Foundation for Research in Economics, Yale University.
  3. Joon Y. Park & Peter C. B. Phillips, 1999. "Nonlinear Regressions with Integrated Time Series," Working Paper Series no6, Institute of Economic Research, Seoul National University.
  4. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-87.
  5. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
  6. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
  7. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1656. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.