Advanced Search
MyIDEAS: Login

A Decomposition Algorithm for N-Player Games

Contents:

Author Info

  • Govindan, Srihari

    (U of Iowa)

  • Wilson, Robert B.

    (Stanford U)

Abstract

An N-player game can be approximated by adding a coordinator who interacts bilaterally with each player. The coordinator proposes strategies to the players, and his payoff is maximized when each player's optimal reply agrees with his proposal. When the feasible set of proposals is finite, a solution of an associated linear complementarity problem yields an approximate equilibrium of the original game. Computational efficiency is improved by using the vertices of Kuhn's triangulation of the players' strategy space for the coordinator's pure strategies. Computational experience is reported.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://gsbapps.stanford.edu/researchpapers/library/RP1967.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Stanford University, Graduate School of Business in its series Research Papers with number 1967.

as in new window
Length:
Date of creation: Aug 2007
Date of revision:
Handle: RePEc:ecl:stabus:1967

Contact details of provider:
Postal: Stanford University, Stanford, CA 94305-5015
Phone: (650) 723-2146
Fax: (650)725-6750
Email:
Web page: http://gsbapps.stanford.edu/researchpapers/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
  2. Rahul Savani & Bernhard Stengel, 2006. "Hard-to-Solve Bimatrix Games," Econometrica, Econometric Society, vol. 74(2), pages 397-429, 03.
  3. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
  4. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
  5. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759 Elsevier.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Iryna Topolyan, 2013. "Existence of perfect equilibria: a direct proof," Economic Theory, Springer, vol. 53(3), pages 697-705, August.
  2. Govindand, Srihari & Wilson, Robert B., 2008. "Computing Equilibria of N-Player Games with Arbitrary Accuracy," Research Papers 1984, Stanford University, Graduate School of Business.
  3. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer, vol. 42(1), pages 1-7, January.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:1967. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.