IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/0904.html
   My bibliography  Save this paper

Valuing fuel diversification in optimal investment policies for electricity generation portfolios

Author

Listed:
  • Malte Sunderkoetter
  • Christoph Weber

    (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen)

Abstract

Optimal capacity allocation for investments in electricity generation assets can be deterministically derived by comparing technology specific long-term and short-term marginal costs. In an uncertain market environment, Mean-Variance Portfolio (MVP) theory provides a consistent framework to valuate financial risks in power generation portfolios that allows to derive the efficient fuel mix of a system portfolio with different generation technologies from a welfare maximization perspective. Because existing literature on MVP applications in electricity generation markets uses predominantly numerical methods to characterize portfolio risks, this article presents a novel analytical approach combining conceptual elements of peak-load pricing and MVP theory to derive optimal portfolios consisting of an arbitrary number of plant technologies given uncertain fuel prices. For this purpose, we provide a static optimization model which allows to fully capture fuel price risks in a mean variance portfolio framework. The analytically derived optimality conditions contribute to a much better understanding of the optimal investment policy and its risk characteristics compared to existing numerical methods. Furthermore, we demonstrate an application of the proposed framework and results to the German electricity market which has not yet been treated in MVP literature on electricity markets.

Suggested Citation

  • Malte Sunderkoetter & Christoph Weber, 2009. "Valuing fuel diversification in optimal investment policies for electricity generation portfolios," EWL Working Papers 0904, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Nov 2009.
  • Handle: RePEc:dui:wpaper:0904
    as

    Download full text from publisher

    File URL: http://www.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Arbeitspapiere/RePEc/pdf/wp0904_Valuing_Diversification_In_Generation_Portfolios.pdf
    File Function: First version, 2009
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stirling, Andrew, 1994. "Diversity and ignorance in electricity supply investment : Addressing the solution rather than the problem," Energy Policy, Elsevier, vol. 22(3), pages 195-216, March.
    2. Bar-Lev, Dan & Katz, Steven, 1976. "A Portfolio Approach to Fossil Fuel Procurement in the Electric Utility Industry," Journal of Finance, American Finance Association, vol. 31(3), pages 933-947, June.
    3. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, September.
    4. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
    2. Malte Sunderkötter & Christoph Weber, 2011. "Mean-Variance optimization of power generation portfolios under uncertainty in the merit order," EWL Working Papers 1105, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    2. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    3. Arash Farnoosh, 2016. "On the economic optimization of national power generation mix in Iran: A Markowitz' portfolio-based approach," Working Papers hal-02475534, HAL.
    4. Skea, Jim, 2010. "Valuing diversity in energy supply," Energy Policy, Elsevier, vol. 38(7), pages 3608-3621, July.
    5. Rowan Adams & Tooraj Jamasb, 2016. "Optimal Power Generation Portfolios with Renewables: An Application to the UK," Working Papers EPRG 1620, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    7. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    8. Chi Kong Chyong & Carmen Li & David Reiner & Fabien Roques, 2020. "A Portfolio approach to wind and solar deployment in Australia," Working Papers EPRG2022, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    10. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    11. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    12. Tolis, Athanasios I. & Rentizelas, Athanasios A., 2011. "An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios," Applied Energy, Elsevier, vol. 88(11), pages 3791-3806.
    13. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    14. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," NBER Working Papers 22494, National Bureau of Economic Research, Inc.
    15. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    16. Jason West, 2011. "A comparative analysis of the future cost of electricity generation in OECD and non-OECD countries," Discussion Papers in Finance finance:201105, Griffith University, Department of Accounting, Finance and Economics.
    17. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    18. Yang, Yuying & Li, Jianping & Sun, Xiaolei & Chen, Jianming, 2014. "Measuring external oil supply risk: A modified diversification index with country risk and potential oil exports," Energy, Elsevier, vol. 68(C), pages 930-938.
    19. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    20. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    More about this item

    Keywords

    power plant investments; peak load pricing; mean-variance portfolio theory; fuel mix diversification;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:0904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.