IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/462.html
   My bibliography  Save this paper

Measuring Equity Volatility: the case of Chilean Stock Index

Author

Listed:
  • Rodrigo Alfaro
  • Carmen Gloria Silva

Abstract

This paper reviews the traditional ways to measure volatility which are based only on closing prices, and introduces alternative measurements suggested in Parkinson (1980), Garman and Klass (1980), and Rogers and Satchell (1991). Those measurements use additional information of prices throughout the day, which makes them more efficient than the traditional ones. We consider this property relevant for financial stress episodies, when traditional measurements fail. In an empirical application for the Chilean stock market, we confirm the theoretical results and provide an index of price volatility based on daily highs and lows.

Suggested Citation

  • Rodrigo Alfaro & Carmen Gloria Silva, 2008. "Measuring Equity Volatility: the case of Chilean Stock Index," Working Papers Central Bank of Chile 462, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:462
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_462.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    4. Linton, Oliver, 1997. "An Asymptotic Expansion in the GARCH(l, 1) Model," Econometric Theory, Cambridge University Press, vol. 13(4), pages 558-581, February.
    5. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Lumsdaine, Robin L, 1995. "Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 1-10, January.
    8. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    9. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    2. Rodrigo A. Alfaro & Carmen Gloria Silva, 2008. "Volatilidad de Indices Accionarios: El caso del IPSA," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 45(132), pages 217-233.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
    6. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    7. Vogel, Harold L. & Werner, Richard A., 2015. "An analytical review of volatility metrics for bubbles and crashes," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 15-28.
    8. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    11. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    12. David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
    13. Natividad Blasco & Pilar Corredor & Sandra Ferreruela, 2012. "Does herding affect volatility? Implications for the Spanish stock market," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 311-327, July.
    14. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    15. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    17. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    18. Nikkin L. Beronilla & Dennis S. Mapa, 2008. "Range-based models in estimating value-at-risk (VaR)," Philippine Review of Economics, University of the Philippines School of Economics and Philippine Economic Society, vol. 45(2), pages 87-99, December.
    19. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    20. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.