IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt9vz1b9rs.html
   My bibliography  Save this paper

Distance-dependent Congestion Pricing for Downtown Zones

Author

Listed:
  • Daganzo, Carlos F
  • Lehe, Lewis J

Abstract

No abstract is available for this item.

Suggested Citation

  • Daganzo, Carlos F & Lehe, Lewis J, 2014. "Distance-dependent Congestion Pricing for Downtown Zones," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9vz1b9rs, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt9vz1b9rs
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9vz1b9rs.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    2. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    3. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    4. Fosgerau, Mogens & Small, Kenneth A., 2013. "Hypercongestion in downtown metropolis," Journal of Urban Economics, Elsevier, vol. 76(C), pages 122-134.
    5. Daganzo, Carlos F., 2005. "Improving City Mobility through Gridlock Control: an Approach and Some Ideas," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7w6232wq, Institute of Transportation Studies, UC Berkeley.
    6. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    7. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
    8. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    9. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    10. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    11. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    12. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.
    2. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    3. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    4. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    5. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    6. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    8. Fosgerau, Mogens, 2015. "Congestion in the bathtub," Economics of Transportation, Elsevier, vol. 4(4), pages 241-255.
    9. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    10. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
    11. Chen, Zhi & Wu, Wen-Xiang & Huang, Hai-Jun & Shang, Hua-Yan, 2022. "Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with Macroscopic Fundamental Diagram: user equilibrium, system optimum, and cordon pricing," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 278-303.
    12. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    13. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    14. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    15. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    16. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    17. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    18. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
    19. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    20. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.

    More about this item

    Keywords

    Engineering; congestion pricing; trip length; tolls; policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt9vz1b9rs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.