IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt0131v295.html
   My bibliography  Save this paper

An Integrated Hydrogen Vision for California

Author

Listed:
  • Lipman, Timothy
  • Kammen, Daniel M.
  • Ogden, Joan M
  • Sperling, Dan
  • Eggert, Anthony
  • Lehman, Peter A.
  • Shaheen, Susan
  • Shearer, David

Abstract

This paper concerns the economic and environmental challenges confronting California and the potential role for clean energy systems and hydrogen as an energy carrier in helping to address these challenges. Hydrogen in particular has recently gained great attention as part of a set of solutions to a variety of energy and environmental problems — and based on this potential the current high level of interest is understandable. In our view, however, full realization of the benefits that hydrogen can offer will not be possible without a clear strategy for producing hydrogen from clean and sustainable sources and in a cost-effective manner. One of hydrogen's greatest benefits — having a wide range of potential feedstocks for its production — also complicates the issue of how hydrogen use may be expanded and necessitates careful forethought as key technology paths unfold. We must remember that the additional cost and complexity of building a hydrogen infrastructure is only justified if significant benefits to society are in fact likely to accrue. This paper has been written for two primary purposes. First, we argue that the time is ripe for an expanded science and technology initiative in California for clean energy development and greater end-use energy efficiency. This initiative should span transportation systems, electrical power generation, and natural gas and other fuel use, and should place the potential for expanded use of hydrogen within this broader context. Second, we specifically discuss potential concepts and strategies that California might employ as it continues to explore the use of hydrogen in transportation and stationary settings. The authors believe that at this stage the question is not if California should continue with efforts to expand hydrogen use, because these efforts are already underway, but how these efforts should be structured given the level of effort that ultimately emerges through various political and corporate strategy processes. However, we feel that it is critical that these efforts take place in the context of a broader "no regrets" clean energy strategy for California.

Suggested Citation

  • Lipman, Timothy & Kammen, Daniel M. & Ogden, Joan M & Sperling, Dan & Eggert, Anthony & Lehman, Peter A. & Shaheen, Susan & Shearer, David, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt0131v295, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt0131v295
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0131v295.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lipman, Timothy E. & Edwards, Jennifer L. & Kammen, Daniel M., 2004. "Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems," Energy Policy, Elsevier, vol. 32(1), pages 101-125, January.
    2. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.
    3. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
    4. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt5cc9g0jp, Institute of Transportation Studies, UC Davis.
    5. Lipman, Timothy E., 2004. "What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy," Institute of Transportation Studies, Working Paper Series qt5w82s62b, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipman, Timothy & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt931583w4, Institute of Transportation Studies, UC Davis.
    2. Lipman, Tim & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt9hx260wp, Institute of Transportation Studies, UC Davis.
    3. Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
    4. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    5. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
    6. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    7. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
    8. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.
    9. Lipman, Timothy E. & Edwards, Jennifer L. & Kammen, Daniel M., 2004. "Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems," Energy Policy, Elsevier, vol. 32(1), pages 101-125, January.
    10. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    11. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
    12. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    13. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    14. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    15. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    16. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    17. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    18. Guy Fournier & Stefan Haugrund & Michael Terporten, 2009. "Vehicle-to-Grid - What is the Benefit for a Sustainable Mobility?," Interdisciplinary Management Research, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 5, pages 695-707.
    19. Cristina Rottondi & Simone Fontana & Giacomo Verticale, 2014. "Enabling Privacy in Vehicle-to-Grid Interactions for Battery Recharging," Energies, MDPI, vol. 7(5), pages 1-19, April.
    20. Lipman, Timothy & Shaheen, Susan, 2005. "Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation," Institute of Transportation Studies, Working Paper Series qt63d0t5wb, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    Engineering; UCD-ITS-RR-04-43;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt0131v295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.