Advanced Search
MyIDEAS: Login

Time of ruin in a risk model with generalized Erlang (n) interclaim times and a constant dividend barrier

Contents:

Author Info

  • Maite Teresa Marmol Jimenez
  • M. Mercedes Claramunt Bielsa

    (Universitat de Barcelona)

Registered author(s):

    Abstract

    In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.ere.ub.es/dtreball/E06157.rdf/at_download/file
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universitat de Barcelona. Espai de Recerca en Economia in its series Working Papers in Economics with number 157.

    as in new window
    Length: 18 pages
    Date of creation: 2006
    Date of revision:
    Handle: RePEc:bar:bedcje:2006157

    Contact details of provider:
    Postal: Espai de Recerca en Economia, Facultat de Ciències Econòmiques. Tinent Coronel Valenzuela, Num 1-11 08034 Barcelona. Spain.
    Web page: http://www.ere.ub.es
    More information through EDIRC

    Related research

    Keywords:

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Albrecher, Hansjorg & Claramunt, M.Merce & Marmol, Maite, 2005. "On the distribution of dividend payments in a Sparre Andersen model with generalized Erlang(n) interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 324-334, October.
    2. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    3. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    4. Ren, Jiandong, 2005. "The expected value of the time of ruin and the moments of the discounted deficit at ruin in the perturbed classical risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 505-521, December.
    5. Li, Shuanming & Garrido, Jose, 2004. "On a class of renewal risk models with a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 691-701, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:2006157. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Espai de Recerca en Economia).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.