IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.02436.html
   My bibliography  Save this paper

Bitcoin versus S&P 500 Index: Return and Risk Analysis

Author

Listed:
  • A. H. Nzokem

Abstract

The S&P 500 index is considered the most popular trading instrument in financial markets. With the rise of cryptocurrencies over the past years, Bitcoin has also grown in popularity and adoption. The paper aims to analyze the daily return distribution of the Bitcoin and S&P 500 index and assess their tail probabilities through two financial risk measures. As a methodology, We use Bitcoin and S&P 500 Index daily return data to fit The seven-parameter General Tempered Stable (GTS) distribution using the advanced Fast Fractional Fourier transform (FRFT) scheme developed by combining the Fast Fractional Fourier (FRFT) algorithm and the 12-point rule Composite Newton-Cotes Quadrature. The findings show that peakedness is the main characteristic of the S&P 500 return distribution, whereas heavy-tailedness is the main characteristic of the Bitcoin return distribution. The GTS distribution shows that $80.05\%$ of S&P 500 returns are within $-1.06\%$ and $1.23\%$ against only $40.32\%$ of Bitcoin returns. At a risk level ($\alpha$), the severity of the loss ($AVaR_{\alpha}(X)$) on the left side of the distribution is larger than the severity of the profit ($AVaR_{1-\alpha}(X)$) on the right side of the distribution. Compared to the S&P 500 index, Bitcoin has $39.73\%$ more prevalence to produce high daily returns (more than $1.23\%$ or less than $-1.06\%$). The severity analysis shows that at a risk level ($\alpha$) the average value-at-risk ($AVaR(X)$) of the bitcoin returns at one significant figure is four times larger than that of the S&P 500 index returns at the same risk.

Suggested Citation

  • A. H. Nzokem, 2023. "Bitcoin versus S&P 500 Index: Return and Risk Analysis," Papers 2310.02436, arXiv.org.
  • Handle: RePEc:arx:papers:2310.02436
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.02436
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Young Kim & Svetlozar Rachev & Michele Bianchi & Frank Fabozzi, 2009. "Computing VAR and AVaR in Infinitely Divisible Distributions," Yale School of Management Working Papers amz2569, Yale School of Management.
    3. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
    4. A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
    5. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    6. Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
    7. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    8. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    9. Peter H. Westfall, 2014. "Kurtosis as Peakedness, 1905-2014. R.I.P," The American Statistician, Taylor & Francis Journals, vol. 68(3), pages 191-195, April.
    10. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    11. A. H. Nzokem & V. T. Montshiwa, 2022. "Fitting Generalized Tempered Stable distribution: Fractional Fourier Transform (FRFT) Approach," Papers 2205.00586, arXiv.org, revised Jun 2022.
    12. Young Kim & Svetlozar Rachev & Michele Bianchi & Frank Fabozzi, 2009. "Computing VAR and AVaR in Infinitely Divisible Distributions," Yale School of Management Working Papers amz2569, Yale School of Management.
    13. A.H. Nzokem, 2021. "SIS Epidemic Model Birth-and-Death Markov Chain Approach," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-10, July.
    14. Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
    15. Conghui Chen & Lanlan Liu & Ningru Zhao, 2020. "Fear Sentiment, Uncertainty, and Bitcoin Price Dynamics: The Case of COVID-19," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2298-2309, August.
    16. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    17. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
    2. Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2019. "Advanced model calibration on bitcoin options," Digital Finance, Springer, vol. 1(1), pages 117-137, November.
    3. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.
    4. Aktham Maghyereh & Hussein Abdoh, 2022. "COVID-19 and the volatility interlinkage between bitcoin and financial assets," Empirical Economics, Springer, vol. 63(6), pages 2875-2901, December.
    5. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    6. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    7. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    8. Ajithakumari Vijayappan Nair Biju & Ann Susan Thomas, 2023. "Uncertainties and ambivalence in the crypto market: an urgent need for a regional crypto regulation," SN Business & Economics, Springer, vol. 3(8), pages 1-21, August.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    11. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    12. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    13. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    14. Feng-Tse Tsai, 2019. "Option Implied Stock Buy-Side and Sell-Side Market Depths," Risks, MDPI, vol. 7(4), pages 1-16, October.
    15. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    16. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    17. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    18. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    19. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    20. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.02436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.