IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i2p772-823.html
   My bibliography  Save this article

Intra‐Horizon expected shortfall and risk structure in models with jumps

Author

Listed:
  • Walter Farkas
  • Ludovic Mathys
  • Nikola Vasiljević

Abstract

The present article deals with intra‐horizon risk in models with jumps. Our general understanding of intra‐horizon risk is along the lines of the approach taken in Boudoukh et al. (2004); Rossello (2008); Bhattacharyya et al. (2009); Bakshi and Panayotov (2010); and Leippold and Vasiljević (2020). In particular, we believe that quantifying market risk by strictly relying on point‐in‐time measures cannot be deemed a satisfactory approach in general. Instead, we argue that complementing this approach by studying measures of risk that capture the magnitude of losses potentially incurred at any time of a trading horizon is necessary when dealing with (m)any financial position(s). To address this issue, we propose an intra‐horizon analogue of the expected shortfall for general profit and loss processes and discuss its key properties. Our intra‐horizon expected shortfall is well‐defined for (m)any popular class(es) of Lévy processes encountered when modeling market dynamics and constitutes a coherent measure of risk, as introduced in Cheridito et al. (2004). On the computational side, we provide a simple method to derive the intra‐horizon risk inherent to popular Lévy dynamics. Our general technique relies on results for maturity‐randomized first‐passage probabilities and allows for a derivation of diffusion and single jump risk contributions. These theoretical results are complemented with an empirical analysis, where popular Lévy dynamics are calibrated to the S&P 500 index and Brent crude oil data, and an analysis of the resulting intra‐horizon risk is presented.

Suggested Citation

  • Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:2:p:772-823
    DOI: 10.1111/mafi.12302
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12302
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2013. "CVaR sensitivity with respect to tail thickness," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 977-988.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    5. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    6. Marc Jeannin & Martijn Pistorius, 2010. "A transform approach to compute prices and Greeks of barrier options driven by a class of Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 629-644.
    7. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    8. John Crosby & Nolwenn Le Saux & Aleksandar Mijatović, 2010. "Approximating Lévy Processes With A View To Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 63-91.
    9. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    10. Soeren Asmussen & Dilip Madan & Martijn Pistorius, 2007. "Pricing Equity Default Swaps under an approximation to the CGMY L\'{e}% vy Model," Papers 0711.2807, arXiv.org.
    11. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    12. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    13. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    14. Hofer & Mayer, 2013. "Pricing and Hedging of Lookback Options in Hyper-exponential Jump Diffusion Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(5), pages 489-511, November.
    15. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    16. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    17. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    18. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    19. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    20. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    21. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    22. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    23. Toshikazu Kimura, 2010. "Alternative Randomization For Valuing American Options," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 167-187.
    24. Malay Bhattacharyya & Nityanand Misra & Bharat Kodase, 2009. "MaxVaR for non-normal and heteroskedastic returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 925-935.
    25. Ludovic Mathys, 2019. "Valuing Tradeability in Exponential L\'evy Models," Papers 1912.00469, arXiv.org, revised Feb 2020.
    26. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zsurkis, Gabriel & Nicolau, João & Rodrigues, Paulo M.M., 2024. "First passage times in portfolio optimization: A novel nonparametric approach," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1074-1085.
    2. Christos E. Kountzakis & Damiano Rossello, 2022. "Monetary risk measures for stochastic processes via Orlicz duality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 35-56, June.
    3. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    2. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    3. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    4. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    5. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    6. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    8. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    9. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    10. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    11. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    12. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    13. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    14. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    15. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org.
    16. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    17. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    18. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    19. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    20. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:2:p:772-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.