IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.00073.html
   My bibliography  Save this paper

Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction

Author

Listed:
  • Kelvin J. L. Koa
  • Yunshan Ma
  • Ritchie Ng
  • Tat-Seng Chua

Abstract

Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility, allowing financial institutions to price and hedge derivatives, and banks to quantify the risk in their trading books. Additionally, most financial regulators also require a liquidity horizon of several days for institutional investors to exit their risky assets, in order to not materially affect market prices. However, the task of multi-step stock price prediction is challenging, given the highly stochastic nature of stock data. Current solutions to tackle this problem are mostly designed for single-step, classification-based predictions, and are limited to low representation expressiveness. The problem also gets progressively harder with the introduction of the target price sequence, which also contains stochastic noise and reduces generalizability at test-time. To tackle these issues, we combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction through a stochastic generative process. The hierarchical VAE allows us to learn the complex and low-level latent variables for stock prediction, while the diffusion probabilistic model trains the predictor to handle stock price stochasticity by progressively adding random noise to the stock data. Our Diffusion-VAE (D-Va) model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance. More importantly, the multi-step outputs can also allow us to form a stock portfolio over the prediction length. We demonstrate the effectiveness of our model outputs in the portfolio investment task through the Sharpe ratio metric and highlight the importance of dealing with different types of prediction uncertainties.

Suggested Citation

  • Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2309.00073
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.00073
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    5. Jiexia Ye & Juanjuan Zhao & Kejiang Ye & Chengzhong Xu, 2020. "Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction," Papers 2005.04955, arXiv.org, revised Oct 2020.
    6. Alessandro Beber & Marco Pagano, 2013. "Short-Selling Bans Around the World: Evidence from the 2007–09 Crisis," Journal of Finance, American Finance Association, vol. 68(1), pages 343-381, February.
    7. Chang, Eric C. & Luo, Yan & Ren, Jinjuan, 2014. "Short-selling, margin-trading, and price efficiency: Evidence from the Chinese market," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 411-424.
    8. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
    9. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    10. Raunig, Burkhard, 2006. "The longer-horizon predictability of German stock market volatility," International Journal of Forecasting, Elsevier, vol. 22(2), pages 363-372.
    11. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    12. Linyi Yang & Jiazheng Li & Ruihai Dong & Yue Zhang & Barry Smyth, 2022. "NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting," Papers 2201.01770, arXiv.org.
    13. Brandon Da Silva & Sylvie Shang Shi, 2019. "Style Transfer with Time Series: Generating Synthetic Financial Data," Papers 1906.03232, arXiv.org, revised Dec 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Ren & Ruihan Zhou & Jinyang Jiang & Jiafeng Liang & Qinghao Wang & Yijie Peng, 2024. "RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search," Papers 2402.07080, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    3. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    4. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    5. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    6. Yi Huang & Wei Zhu & Duan Li & Shushang Zhu & Shikun Wang, 2023. "Integrating Different Informations for Portfolio Selection," Papers 2305.17881, arXiv.org.
    7. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    8. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    9. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    10. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    11. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    12. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    13. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    14. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    15. Massimo Biasin & Roy Cerqueti & Emanuela Giacomini & Nicoletta Marinelli & Anna Grazia Quaranta & Luca Riccetti, 2019. "Macro Asset Allocation with Social Impact Investments," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    16. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    17. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    18. Victor DeMiguel & Francisco J. Nogales & Raman Uppal, 2014. "Stock Return Serial Dependence and Out-of-Sample Portfolio Performance," The Review of Financial Studies, Society for Financial Studies, vol. 27(4), pages 1031-1073.
    19. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    20. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.00073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.