IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.06935.html
   My bibliography  Save this paper

Insurance pricing on price comparison websites via reinforcement learning

Author

Listed:
  • Tanut Treetanthiploet
  • Yufei Zhang
  • Lukasz Szpruch
  • Isaac Bowers-Barnard
  • Henrietta Ridley
  • James Hickey
  • Chris Pearce

Abstract

The emergence of price comparison websites (PCWs) has presented insurers with unique challenges in formulating effective pricing strategies. Operating on PCWs requires insurers to strike a delicate balance between competitive premiums and profitability, amidst obstacles such as low historical conversion rates, limited visibility of competitors' actions, and a dynamic market environment. In addition to this, the capital intensive nature of the business means pricing below the risk levels of customers can result in solvency issues for the insurer. To address these challenges, this paper introduces reinforcement learning (RL) framework that learns the optimal pricing policy by integrating model-based and model-free methods. The model-based component is used to train agents in an offline setting, avoiding cold-start issues, while model-free algorithms are then employed in a contextual bandit (CB) manner to dynamically update the pricing policy to maximise the expected revenue. This facilitates quick adaptation to evolving market dynamics and enhances algorithm efficiency and decision interpretability. The paper also highlights the importance of evaluating pricing policies using an offline dataset in a consistent fashion and demonstrates the superiority of the proposed methodology over existing off-the-shelf RL/CB approaches. We validate our methodology using synthetic data, generated to reflect private commercially available data within real-world insurers, and compare against 6 other benchmark approaches. Our hybrid agent outperforms these benchmarks in terms of sample efficiency and cumulative reward with the exception of an agent that has access to perfect market information which would not be available in a real-world set-up.

Suggested Citation

  • Tanut Treetanthiploet & Yufei Zhang & Lukasz Szpruch & Isaac Bowers-Barnard & Henrietta Ridley & James Hickey & Chris Pearce, 2023. "Insurance pricing on price comparison websites via reinforcement learning," Papers 2308.06935, arXiv.org.
  • Handle: RePEc:arx:papers:2308.06935
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.06935
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Raju & Y. Narahari & K. Ravikumar, 2006. "Learning dynamic prices in electronic retail markets with customer segmentation," Annals of Operations Research, Springer, vol. 143(1), pages 59-75, March.
    2. Gah-Yi Ban & N. Bora Keskin, 2021. "Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity," Management Science, INFORMS, vol. 67(9), pages 5549-5568, September.
    3. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    4. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    5. Raad Khraishi & Ramin Okhrati, 2022. "Offline Deep Reinforcement Learning for Dynamic Pricing of Consumer Credit," Papers 2203.03003, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conor B. Hamill & Raad Khraishi & Simona Gherghel & Jerrard Lawrence & Salvatore Mercuri & Ramin Okhrati & Greig A. Cowan, 2023. "Agent-based Modelling of Credit Card Promotions," Papers 2311.01901, arXiv.org, revised Nov 2023.
    2. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    3. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    4. Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
    5. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    6. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    7. Fett, Daniel & Fraunholz, Christoph & Keles, Dogan, 2021. "Diffusion and system impact of residential battery storage under different regulatory settings," Energy Policy, Elsevier, vol. 158(C).
    8. Jean-Thomas Baillargeon & Luc Lamontagne & Etienne Marceau, 2020. "Mining Actuarial Risk Predictors in Accident Descriptions Using Recurrent Neural Networks," Risks, MDPI, vol. 9(1), pages 1-14, December.
    9. Zeqi Ye & Hansheng Jiang, 2023. "Smoothness-Adaptive Dynamic Pricing with Nonparametric Demand Learning," Papers 2310.07558, arXiv.org, revised Oct 2023.
    10. Erik Heilmann, 2021. "The impact of transparency policies on local flexibility markets in electrical distribution networks: A case study with artificial neural network forecasts," MAGKS Papers on Economics 202141, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. N. Bora Keskin & Yuexing Li & Jing-Sheng Song, 2022. "Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment," Management Science, INFORMS, vol. 68(3), pages 1938-1958, March.
    12. Mehrbakhsh Nilashi & Abbas Mardani & Huchang Liao & Hossein Ahmadi & Azizah Abdul Manaf & Wafa Almukadi, 2019. "A Hybrid Method with TOPSIS and Machine Learning Techniques for Sustainable Development of Green Hotels Considering Online Reviews," Sustainability, MDPI, vol. 11(21), pages 1-21, October.
    13. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    14. Ying Liu & Hong Li & Geng Peng & Benfu Lv & Chong Zhang, 2015. "Online purchaser segmentation and promotion strategy selection: evidence from Chinese E-commerce market," Annals of Operations Research, Springer, vol. 233(1), pages 263-279, October.
    15. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    16. Jinzhi Bu & David Simchi-Levi & Yunzong Xu, 2022. "Online Pricing with Offline Data: Phase Transition and Inverse Square Law," Management Science, INFORMS, vol. 68(12), pages 8568-8588, December.
    17. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    18. Shengkun Xie & Rebecca Luo, 2022. "Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    19. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    20. Kimmo Berg & Harri Ehtamo, 2009. "Learning in nonlinear pricing with unknown utility functions," Annals of Operations Research, Springer, vol. 172(1), pages 375-392, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.06935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.