IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2020i1p4-d467315.html
   My bibliography  Save this article

Machine Learning in P&C Insurance: A Review for Pricing and Reserving

Author

Listed:
  • Christopher Blier-Wong

    (École d’actuariat, Université Laval, Québec, QC G1V 0A6, Canada)

  • Hélène Cossette

    (École d’actuariat, Université Laval, Québec, QC G1V 0A6, Canada)

  • Luc Lamontagne

    (Département d’informatique et de génie logiciel, Université Laval, Québec, QC G1V 0A6, Canada)

  • Etienne Marceau

    (École d’actuariat, Université Laval, Québec, QC G1V 0A6, Canada)

Abstract

In the past 25 years, computer scientists and statisticians developed machine learning algorithms capable of modeling highly nonlinear transformations and interactions of input features. While actuaries use GLMs frequently in practice, only in the past few years have they begun studying these newer algorithms to tackle insurance-related tasks. In this work, we aim to review the applications of machine learning to the actuarial science field and present the current state of the art in ratemaking and reserving. We first give an overview of neural networks, then briefly outline applications of machine learning algorithms in actuarial science tasks. Finally, we summarize the future trends of machine learning for the insurance industry.

Suggested Citation

  • Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
  • Handle: RePEc:gam:jrisks:v:9:y:2020:i:1:p:4-:d:467315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Guangyuan Gao & Mario V. Wüthrich, 2019. "Convolutional Neural Network Classification of Telematics Car Driving Data," Risks, MDPI, vol. 7(1), pages 1-18, January.
    3. Yue Liu & Bing-Jie Wang & Shao-Gao Lv, 2014. "Using Multi-class AdaBoost Tree for Prediction Frequency of Auto Insurance," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 4(5), pages 1-4.
    4. Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
    5. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    6. Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
    7. Lopez, Olivier & Milhaud, Xavier & Thérond, Pierre-E., 2019. "A Tree-Based Algorithm Adapted To Microlevel Reserving And Long Development Claims," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 741-762, September.
    8. Mario V. Wüthrich, 2018. "Machine learning in individual claims reserving," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(6), pages 465-480, July.
    9. Andrea Gabrielli & Mario V. Wüthrich, 2018. "An Individual Claims History Simulation Machine," Risks, MDPI, vol. 6(2), pages 1-32, March.
    10. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    11. Kevin Kuo & Daniel Lupton, 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing," Papers 2003.10674, arXiv.org.
    12. Maximilien Baudry & Christian Y. Robert, 2019. "A machine learning approach for individual claims reserving in insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(5), pages 1127-1155, September.
    13. Massimo De Felice & Franco Moriconi, 2019. "Claim Watching and Individual Claims Reserving Using Classification and Regression Trees," Risks, MDPI, vol. 7(4), pages 1-36, October.
    14. Weidner, Wiltrud & Transchel, Fabian W.G. & Weidner, Robert, 2017. "Telematic driving profile classification in car insurance pricing," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 213-236, September.
    15. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    16. Simon C. K. Lee & Sheldon Lin, 2018. "Delta Boosting Machine with Application to General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 405-425, July.
    17. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    18. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    19. Liqun Diao & Chengguo Weng, 2019. "Regression Tree Credibility Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(2), pages 169-196, April.
    20. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    21. Hansjörg Albrecher & Antoine Bommier & Damir Filipović & Pablo Koch-Medina & Stéphane Loisel & Hato Schmeiser, 2019. "Insurance: models, digitalization, and data science," Post-Print hal-02471987, HAL.
    22. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," LIDAM Reprints ISBA 2014006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    23. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.
    24. Jair Ferreira Júnior & Eduardo Carvalho & Bruno V Ferreira & Cleidson de Souza & Yoshihiko Suhara & Alex Pentland & Gustavo Pessin, 2017. "Driver behavior profiling: An investigation with different smartphone sensors and machine learning," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-16, April.
    25. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Thomas Baillargeon & Luc Lamontagne & Etienne Marceau, 2020. "Mining Actuarial Risk Predictors in Accident Descriptions Using Recurrent Neural Networks," Risks, MDPI, vol. 9(1), pages 1-14, December.
    2. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    3. Tanut Treetanthiploet & Yufei Zhang & Lukasz Szpruch & Isaac Bowers-Barnard & Henrietta Ridley & James Hickey & Chris Pearce, 2023. "Insurance pricing on price comparison websites via reinforcement learning," Papers 2308.06935, arXiv.org.
    4. Shengkun Xie & Rebecca Luo, 2022. "Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    5. Shengkun Xie & Kun Shi, 2023. "Generalised Additive Modelling of Auto Insurance Data with Territory Design: A Rate Regulation Perspective," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    6. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    2. Simon CK Lee, 2020. "Delta Boosting Implementation of Negative Binomial Regression in Actuarial Pricing," Risks, MDPI, vol. 8(1), pages 1-21, February.
    3. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    4. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    5. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    6. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    7. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    8. Emer Owens & Barry Sheehan & Martin Mullins & Martin Cunneen & Juliane Ressel & German Castignani, 2022. "Explainable Artificial Intelligence (XAI) in Insurance," Risks, MDPI, vol. 10(12), pages 1-50, December.
    9. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    10. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    11. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    12. Greg Taylor, 2019. "Risks Special Issue on “Granular Models and Machine Learning Models”," Risks, MDPI, vol. 8(1), pages 1-2, December.
    13. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    14. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    15. Denuit, Michel & Legrand, Catherine, 2016. "Risk Classification in Life Insurance: Extension to Continuous Covariates," LIDAM Discussion Papers ISBA 2016045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Benjamin Avanzi & Gregory Clive Taylor & Melantha Wang, 2021. "SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator," Papers 2109.04058, arXiv.org, revised Mar 2022.
    17. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    18. Hainaut, Donatien & Trufin, Julien & Denuit, Michel, 2021. "Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link," LIDAM Discussion Papers ISBA 2021012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Tzougas, George & Vrontos, Spyridon D. & Frangos, Nickolaos E., 2015. "Risk classification for claim counts and losses using regression models for location, scale and shape," LSE Research Online Documents on Economics 70921, London School of Economics and Political Science, LSE Library.
    20. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2020:i:1:p:4-:d:467315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.