IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.01599.html
   My bibliography  Save this paper

A Scalable Reinforcement Learning-based System Using On-Chain Data for Cryptocurrency Portfolio Management

Author

Listed:
  • Zhenhan Huang
  • Fumihide Tanaka

Abstract

On-chain data (metrics) of blockchain networks, akin to company fundamentals, provide crucial and comprehensive insights into the networks. Despite their informative nature, on-chain data have not been utilized in reinforcement learning (RL)-based systems for cryptocurrency (crypto) portfolio management (PM). An intriguing subject is the extent to which the utilization of on-chain data can enhance an RL-based system's return performance compared to baselines. Therefore, in this study, we propose CryptoRLPM, a novel RL-based system incorporating on-chain data for end-to-end crypto PM. CryptoRLPM consists of five units, spanning from information comprehension to trading order execution. In CryptoRLPM, the on-chain data are tested and specified for each crypto to solve the issue of ineffectiveness of metrics. Moreover, the scalable nature of CryptoRLPM allows changes in the portfolios' cryptos at any time. Backtesting results on three portfolios indicate that CryptoRLPM outperforms all the baselines in terms of accumulated rate of return (ARR), daily rate of return (DRR), and Sortino ratio (SR). Particularly, when compared to Bitcoin, CryptoRLPM enhances the ARR, DRR, and SR by at least 83.14%, 0.5603%, and 2.1767 respectively.

Suggested Citation

  • Zhenhan Huang & Fumihide Tanaka, 2023. "A Scalable Reinforcement Learning-based System Using On-Chain Data for Cryptocurrency Portfolio Management," Papers 2307.01599, arXiv.org.
  • Handle: RePEc:arx:papers:2307.01599
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.01599
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    2. Zhenhan Huang & Fumihide Tanaka, 2021. "MSPM: A Modularized and Scalable Multi-Agent Reinforcement Learning-based System for Financial Portfolio Management," Papers 2102.03502, arXiv.org, revised Feb 2022.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Zhenhan Huang & Fumihide Tanaka, 2022. "MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Liu Ziyin & Kentaro Minami & Kentaro Imajo, 2021. "Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction," Papers 2106.04114, arXiv.org, revised Dec 2022.
    4. Jonas Hanetho, 2023. "Deep Policy Gradient Methods in Commodity Markets," Papers 2308.01910, arXiv.org.
    5. Shuo Sun & Wanqi Xue & Rundong Wang & Xu He & Junlei Zhu & Jian Li & Bo An, 2021. "DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities," Papers 2201.09058, arXiv.org, revised Aug 2022.
    6. Wentao Zhang & Yilei Zhao & Shuo Sun & Jie Ying & Yonggang Xie & Zitao Song & Xinrun Wang & Bo An, 2023. "Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools," Papers 2311.10801, arXiv.org, revised Feb 2024.
    7. Gang Huang & Xiaohua Zhou & Qingyang Song, 2020. "Deep reinforcement learning for portfolio management," Papers 2012.13773, arXiv.org, revised Apr 2022.
    8. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    9. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.
    10. Steininger, Lea & Hesse, Casimir, 2024. "Buying into new ideas: The ECB’s evolving justification of unlimited liquidity," Department of Economics Working Paper Series 357, WU Vienna University of Economics and Business.
    11. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    12. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    13. Andrew Weinbach & Rodney J. Paul, 2009. "National television coverage and the behavioural bias of bettors: the American college football totals market," International Gambling Studies, Taylor & Francis Journals, vol. 9(1), pages 55-66, April.
    14. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    16. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    17. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    18. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    19. Gaio, Luiz Eduardo & Stefanelli, Nelson Oliveira & Pimenta, Tabajara & Bonacim, Carlos Alberto Grespan & Gatsios, Rafael Confetti, 2022. "The impact of the Russia-Ukraine conflict on market efficiency: Evidence for the developed stock market," Finance Research Letters, Elsevier, vol. 50(C).
    20. Anastasios Evgenidis & Stephanos Papadamou, 2021. "The impact of unconventional monetary policy in the euro area. Structural and scenario analysis from a Bayesian VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5684-5703, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.01599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.